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How green is sugarcane ethanol?

Marcelo Sant’Anna∗

November 8, 2015

JOB MARKET PAPER

Abstract

Biofuels offer one approach for reducing carbon emissions in transportation. However,
the agricultural expansion needed to produce biofuels may endanger tropical forests and
thus offset the benefits of fossil fuel substitution. Whether this occurs depends on the
extent to which increases in biofuels supply arise from gains in yields per acre or expansion
in growing areas. I use a dynamic model of land use to disentangle the roles played by
acreage expansion and yield increases in the supply of sugarcane ethanol in Brazil. The
model is estimated using a panel of 1.8 million fields, which is built using remote sensing
(satellite) information of sugarcane activities. My estimates imply that, at the margin,
94% of new ethanol comes from increases in area planted and only 6% from increases
in yield. Direct deforestation accounts for 12% of area expansion. Balancing carbon
emissions from deforestation and the carbon saved by fossil fuel substitution, I find that
it would take about 20 years for the lower emissions from sugarcane ethanol to “pay
back” the added emissions from deforestation. As an illustrative policy experiment, I
consider the effects of a 5 billion gallon sugarcane ethanol mandate (~ 3% of US gasoline
consumption). Such policy would lead to a 1% price increase and deforestation of about
9,000 sq. km. (∼ 3/4 the size of Connecticut).
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thank Bernardo Rudorff and Daniel Aguiar for help with CANASAT data. I acknowledge financial support
from Yale University and the Merril G. Hastings Memorial Scholarship Fund. This work was supported in part
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1 Introduction

In the past decade the world has seen an unprecedented debate on climate change, mainly
about how to reduce emissions of CO2 and other greenhouse gases. Reduction of emissions
is especially challenging in the transportation sector, which still relies heavily on fossil fuels.1

Biofuels are an attractive tool for reducing carbon emissions in transportation, as they can
be blended with petroleum fuels in unmodified vehicles. This is an advantage of biofuels
compared to other lower carbon alternatives for transportation, such as electric vehicles, as
it does not require changes in the vehicle stock or the refueling infrastructure. However,
the agricultural expansion needed to produce biofuels may endanger tropical forests or other
natural habitats and thus offset the alleged environmental benefits of fossil fuels substitution.2

This deforestation could be reduced if more biofuels are produced by increasing agricultural
yields in existing growing areas.

To assess the environmental benefits of biofuels, we need to understand the roles played
by acreage expansion and yield increases as we move along the supply curve to meet the
increased demand for biofuels feedstock. These issues are particularly important for Brazilian
sugarcane ethanol, which accounts for 39% of the world ethanol supply. A large portion
of Brazil is covered by tropical ecosystems, such as the Amazon rainforest, with important
biodiversity and carbon storage. Figure 1 shows the remaining ecosystems in Brazil alongside
existing sugarcane fields in 2013. Those ecosystems could be endangered by the expansion of
farmland that would follow an increase in sugarcane ethanol demand.

In this paper, I disentangle the roles played by farmland expansion and agricultural yields
in determining the supply of sugarcane ethanol in Brazil. I further estimate the effect of
farmland expansion on forests and other untouched ecosystems.

The agronomic technology of sugarcane farming both guides my modeling and provides
the means by which yields may respond to prices. Sugarcane is a semi-perennial crop, with
declining expected yields over time until fields are replanted and yields restored. Replanting a
field or planting sugarcane for the first time requires fixed land preparation investments that
only pay off in future seasons, which makes optimal decisions forward-looking. The sugarcane
growing technology gives a natural way in which prices can affect average yields through
changes in the timing of replanting. By increasing the frequency of replanting, a farmer can
boost average yields.

The most common types of biofuels policies, e.g., ethanol mandates, imply permanent
shifts in the demand for feedstock used to produce biofuels. Given the fixed costs of land

1Transportation accounted for 23% of energy-related emissions in 2010 and transport demand is on the rise
in the developing world (IPCC, 2014).

2The Intergovernmental Panel on Climate Change (IPCC) recognizes a lack of consensus on the role biofuels
should play in climate change policies. The IPCC Fifth Assessment Report (IPCC, 2014) recommends support
for biofuels be given on a case by case basis.
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Figure 1: Sugarcane and remaining forests in Brazil

Sources: Information on areas of natural cover: Wild Data Version 2, 2005 (LWP-2): Global Human Footprint
Dataset (Geographic). Wildlife Conservation (WCS) and Center for International Earth Science Information
Network (CIESIN). Sugarcane areas: CANASAT, Rudorff et al. (2010).
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preparation, an increase in price perceived as permanent generates different incentives in
terms of sugarcane planting and replanting than transitory price shocks. In this industry,
such clean permanent price changes are hard to see in the data. My approach is to use
variation in agricultural profitability and replanting patterns to estimate a model that allows
me to disentangle the effects of permanent price changes on the intensive (yield) and extensive
(acreage) margins.

I incorporate both adoption of sugarcane and replanting in a single dynamic model. In
the model, farmers planting sugarcane must decide at every period either to replant their
sugarcane fields or not. If they do not replant, expected yields decline next period. If they
choose to replant, they pay a fixed replanting cost and sugarcane yields are restored. This
feature makes this problem similar to optimal machine replacement (Rust, 1987).3 Farmers
always have the option of switching away from sugarcane production to other uses. Meanwhile,
farmers not planting sugarcane must decide at every period whether to plant sugarcane or
not. Payoffs from both sugarcane and other uses depend on prices that are allowed to evolve
stochastically.

I estimate the model using a unique remote sensing dataset of sugarcane land use in Brazil
from the CANASAT project (Rudorff et al., 2010). The project processes satellite images
from Landsat to provide detailed maps of sugarcane field activity for the most important
sugarcane producing region of Brazil. I complement this land use data with GAEZ/FAO
high-resolution potential yield information and other detailed field level land characteristics.
Given the sparsity of good transportation network in remote areas of Brazil, transportation
costs are an important source of variation in agricultural profitability. Therefore, I model a
quality-adjusted transportation network, which is used to measure the transportation cost to
destination markets.

I use the model estimates to decompose the sugarcane supply elasticity into farmland
expansion (extensive margin) and yield (intensive margin) components. I find a long-run
yield elasticity of 0.27, comparable to what is believed an upper bound for most annual crops
in developed countries.4 However, I find a value for the long-run acreage elasticity of 4.38,
which is a different order of magnitude compared to the yield elasticity. The combined effects
of acreage and yield translates into a high supply elasticity, which suggests small price effects
from demand shifts. The high acreage to yield elasticity ratio I find means that, as we move
along the supply curve, 94% of new ethanol comes from expansion in farmland and only 6%
from yield increase that accrues from a faster replanting rate.

The high long-run acreage elasticity found here contrasts with existing measures of acreage
price responses in the literature. Roberts and Schlenker (2013) measure short-run demand

3There is also an interesting parallel with optimal oil drilling (Kellogg (2014), Anderson et al. (2014)), as
oil well productivity also decays exponentially as well pressure recedes.

4See Berry (2011), Scott (2013b) and Miao et al. (2015) for discussions on the potential range for annual
food crops yield-price elasticities.
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and supply elasticities for food crops and find inelastic demand and supply. Scott (2013a)
estimates the acreage elasticity using a dynamic model and US land use data. He finds a higher
long-run acreage elasticity once forward-looking behavior is taken into account. However, the
acreage elasticity found by Scott (2013a) is still an order of magnitude lower than the acreage
elasticity I find for sugarcane in Brazil. This difference can be due in part to the very active
Brazilian agricultural frontier compared to the already consolidated American farmland. This
highlights the danger of extrapolating measures of acreage elasticity from one country to
another when evaluating land use changes. Using American numbers for long run acreage
responses in Brazil would imply that 45% of new ethanol at the margin would come from
yield increases. This would severely understate the environmental costs of biofuels policies as
a smaller fraction of new ethanol would be coming from expansion in farmland.

The high-resolution nature of the data together with the estimated model allows me to
make predictions about which types of land cover are affected by sugarcane expansion. Out
of the total farmland expansion, 12% is predicted to be over forests and other types of natural
cover, with the Cerrado ecosystem and the southern fringe of the Amazon rainforest being
the most affected. Deforestation can be magnified by indirect land substitution as sugarcane
takes over other cropland and pasture. The expansion of sugarcane in areas with previous
agricultural use decreases the supply of other agricultural products and is expected to cause
further expansion of farmland as the market re-equilibrates at a higher price level.

I use available empirical evidence to quantify these indirect effects in deforestation. In
order to put this predicted deforestation in perspective, I balance the carbon released by
direct and indirect deforestation and the carbon saved by replacing fossil fuels. I find that new
ethanol “pays back” in terms of carbon in about 20 years. In contrast, corn ethanol produced
in the US is expected to “pay back” in 167 years (Searchinger et al., 2008). Currently there is
no consensus about payback times for sugarcane ethanol. Estimates of the sugarcane ethanol
carbon payback time vary from 4 to more than 100 years in the scientific literature, depending
on the type of land cover affected (Elshout et al. (2015), Gibbs et al. (2008), Fargione et al.
(2008)). In this paper, I compute a carbon payback time that brings together the economics
of land use and the current scientific knowledge about emissions from land use change.

As an illustrative policy experiment, I discuss the implications of current U.S. Renewable
Fuel Standard (RFS) for land use in Brazil. The current standard assigns a total of 5 billion
gallons in the Advanced Biofuels (ABF) category that need not be met by cellulosic biofuels.
This is equivalent to about only 3% of the U.S. annual gasoline consumption. As of now,
Brazilian sugarcane ethanol is the only viable large scale alternative to fill the ABF mandate.
I find that a 5 billion gallons shift in the market demand for sugarcane ethanol would imply
a modest 1% price increase, but about 2,000 sq. km in direct deforestation. This could be
magnified to 9,000 sq. km (~ 3/4 the size of Connecticut) if indirect effects are considered.

This is not the first study to investigate the implications of ethanol policies in the context
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of Brazilian sugarcane ethanol (e.g., De Gorter et al. (2013), Elobeid and Tokgoz (2008), Lasco
and Khanna (2010) and Nagavarapu (2010)). Other studies in the literature use mainly static
general equilibrium to evaluate the effects of policies in the markets for sugar and ethanol using
supply elasticities derived from short-run responses to prices. An exception is Nagavarapu
(2010), which estimates a static general equilibrium model for land use and labor allocation in
the sugarcane industry in Brazil using micro level data on the worker decision, but aggregate
data on land use.

The rest of the paper is organized as follows. Section 2 presents a short background of the
sugarcane industry in Brazil. Section 3 describes in more detail the land use model. Section
4 presents the data and some descriptive analysis. Section 5 discusses the model estimation.
Counterfactuals are discussed in Section 6. Section 7 concludes.

2 Industry background

Sugarcane has long history in Brazil, dating back to colonial times. Once sugar was the most
important export commodity in the country, but its importance for the Brazilian economy
has faded away over time. In the aftermath of the seventies oil shocks, a government program
(PROALCOOL) was created to foster the use of sugarcane ethanol as a replacement for
gasoline. Large scale production of sugarcane ethanol has been in place since then. In the
past decade, the emergence of flex-fuel vehicles has given a new boost to the sugarcane ethanol
industry.

Sugarcane has been historically grown close to the coast in Southeast and Northeast
Brazil. Today, more than half of sugarcane in Brazil is produced in the State of São Paulo,
where physical conditions are ideal for sugarcane growing. In general, suitable conditions for
sugarcane include a warm and rainy growing season and a cooler and drier harvest season.
The harvest season in the region studied here goes from April to November, depending on
the location and the varieties used. Sugarcane is a semi-perennial crop, which means that
after plants are cut, if the roots are untouched, a ratoon or stubble crop will follow. However,
yields for the ratoon crop are expected to be lower every time this process is repeated (Crago
et al. (2010), Macedo et al. (2008)). For this reason, periodically the field must be replanted
so that yields can be restored. Agriculture manuals recommend replanting roughly every 5
years.

After harvest, sugarcane is transported to a nearby mill, which is usually located at
close proximity to sugarcane fields. Sugarcane is bulky, so it would be uneconomical to ship
cane long distances for milling. Moreover the sugars in the cane deteriorate quickly after
it has been cut, so generally mills are not more than 40 km away from source fields. At
the mill the sugarcane is crushed and the resulting liquid is either fermented to produce
ethanol or processed to produce sugar. Modern mills are also thermal electricity generators.
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They produce electricity by burning leftovers from the crushing process. This innovation
significantly helped the sugarcane ethanol energy balance (Macedo et al., 2008). Although,
there are constant improvements in the milling process, like electricity generation from fibrous
materials, the milling technology is well known. There is an active market of equipment and
machinery for mills and I know of no technological barriers to entry.

Most modern mills can produce both sugar or ethanol and switch production according
to market conditions. This technological feature implies that under perfect competition the
price for sugar and ethanol should follow closely together in the medium-run (De Gorter et al.,
2013). I consider therefore an unified sugarcane final products market in my analysis, that
includes both sugar and ethanol as final outputs. As discussed above, most of the controversy
regarding sugarcane ethanol is on aspects related to land use and yields and not on emissions
accruing from the industrial processes, as those are well understood.

3 Model

The unit of analysis is a field indexed by i, which is managed by a profit maximizing farmer.
In each year, t, farmers must make a decision regarding land use for the next season. This
decision is denoted by qit. If farmers are not planting sugarcane, qit ∈ {plant, stay}, i.e., they
can either plant sugarcane or keep their fields in another economic use. For farmers already
planting sugarcane, qit ∈ {replant, keep, out}, i.e., they can (i) replant the sugarcane fields,
(ii) keep the same plants for next season or (iii) switch land use to another activity.

I denote by ait ∈ {0, 1, . . . , ā} the state of fields regarding its sugarcane use. If ait = 0,
the field is not in sugarcane use, while if ait ≥ 1, the field is in sugarcane use and ait denotes
the sugarcane field age. I denote by wit ∈ W the exogenous state vector, with information
on prices of sugarcane products and alternative crops, land characteristics, transportation
costs and distance to existing sugarcane fields. Finally, there is a state vector εit ∈ R5 which
farmers observe but not the econometrician.

The flow payoff is given by:

Π(ait, wit, qit, εit; θ) = π(ait, wit, qit; θ) + εit(qit), (1)

where π(ait, wit, qit; θ) is a function that depends only on observed state variables and on a
vector of parameters to be estimated, θ. Equation 1 makes it clear that for each choice qit,
there is a different associated unobserved state εit(qit).

I now describe in more detail π(·; θ). For fields not in a sugarcane use, ait = 0, the flow
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payoff is given by:

π(0, wit, qit; θ) =

δrit, if qit = stay,

−ΨE(hi, dit; θ), if qit = plant.
(2)

The return index rit captures the payoff from non sugarcane uses. I defer the discussion about
how the return index rit is constructed to Section 4.4. If farmers choose to stay in other use,
qit = stay, then ait+1 = ait = 0. The fixed cost of sugarcane planting ΨE(hi, dit; θ) depends
on the previous land use,5 hi, and on the distance between the field and the closest existing
sugarcane field at the time dit. As discussed in the previous section, due to cane bulkiness,
sugarcane fields are usually not more than 40 km away from a mill. Therefore, dit proxies
for mill proximity and ΨE(·; θ) captures the cost of moving the agro-industrial complex (mills
and other specific infra-structure) further into the agriculture frontier. The higher cost of
planting sugarcane in land farther away from existing sugarcane activities helps to explain
the sluggish pattern of sugarcane expansion we see in the data. Note that if farmers decide
to plant sugarcane, they reap no sugarcane in the immediate season following their decision.
Using the most common plant varieties, after planting (or replanting) sugarcane fields take
one and a half years to be ready for harvest. If farmers choose to plant sugarcane, qit = plant,
then ait+1 = 1.

The flow payoff for fields in sugarcane use, ait ≥ 1, is given by:

π(ait, wit, qit; θ) =


(pst − tci)κγait−1ysi + x′iβ, if qit = keep,

−ΨR, if qit = replant,

δrit −ΨA, if qit = out.

(3)

If farmers keep the sugarcane fields, their next expected yields are given by the sugarcane
potential yields for field i, ysi , adjusted by the exponential decay in sugarcane productivity
due to field age, γait−1. The parameter κ is a technological conversion factor from sugar-
cane to final product. Variables pst and tci denote, respectively, the final product price and
transportation cost to port. The vector xi keeps track of land specific characteristics, such as
climate, elevation, slope and soil type. Those characteristics should affect harvest and upkeep
costs (e.g., the amount of fertilizer used), so they are allowed to shift the period return from
sugarcane through the term x′iβ. Naturally, physical land characteristics in xi should also in-
fluence sugarcane yields. However, the effect of those variables in expected yields is assumed

5I do not observe land use decisions over time for land not in sugarcane. I observe the state of non-sugarcane
land use at a single year (2000), Ramankutty et al. (2010a). The curse of dimensionality in dynamic discrete
choice models and this limitation in observed other land uses motivates the simple treatment of alternative
land uses.
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to be fully captured by the potential yield measure ysi .6 Finally, if qit = keep, the sugarcane
field ages in the next season, i.e., ait+1 = min{ait+1, ā}. If farmers decide to replant, they pay
a fixed cost ΨR. Analogously to sugarcane planting, there are no sugarcane related payoffs in
the next season. The replanting decision resets field age: ait+1 = 1. Switching to other uses
gives the farmer the return from those other uses, at a fixed land conversion cost ΨA, and
sets ait+1 = 0.

In industry discussions, local weather shocks were usually listed as the most important
factor affecting replanting decisions after sugarcane field age. Particularly bad weather may
increase the costs of the agricultural operation necessary for field replanting as well as per
period field upkeep costs. The effects of these weather shocks are captured by the state
variable εit(qit). Moreover, replanting decisions may not always coincide with the optimal
decision from the agronomic point of view. For instance, mills must make sure they have a
steady supply of sugarcane, therefore all source fields cannot replant at the same time. In
this sense, εit(qit) captures the additional noise introduced by other operational concerns.

Assumption 1. The unobserved state variables, εit(q), are independently and identically
distributed over fields and time.

Assumption 2. The evolution of the exogenous state variables w is not affected by farmers
decisions and ε, i.e., Fwit+1|qit,εit,wit

= Fwit+1|wit
.

Assumption 1 is standard in the dynamic discrete choice literature. Assumption 2 embeds
two important underlying features. First, it implies that farmers are price takers, a reason-
able assumption for agricultural products markets. Second, it implies that choice specific
unobservables ε do not change expectations about the evolution of w.

I assume farmers discount future cash flows using a fixed discount rate ρ < 1. Farmers
choose qit every period conditional on (ait, wit, εit) in order to maximize the sum of future
discounted flow payoffs:

max
qit

E

 ∞∑
j=0

ρjΠ(ai,t+j , wi,t+j , qi,t+j , εi,t+j ; θ)|ait, wit, εit

 .
I rewrite below the dynamic optimization problem faced by farmers in the recursive Bell-

man formulation. In a non sugarcane state, a farmer has two options: leave the land in other
use or convert the land to sugarcane. Therefore, the value function at ait = 0 is

6In the model, I assume farmers use a fixed amount of inputs that gives the maximum attainable yield ys
i .

Input choice is an additional margin farmers could use to increase yields. Empirical evidence for high intensity
agriculture suggests this margin should be small. For instance, Scott (2013b) finds an upper bound for the
yield elasticity of 0.05 from changes in fertilizer use.
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Vθ(0, wit, εit) = max {π(0, wit, stay; θ) + εit(stay) + ρE [Vθ(0, wit+1, εit+1)|wit] ,

π(0, wit, plant; θ) + εit(plant) + ρE [Vθ(1, wit+1, εit+1)|wit]} . (4)

At 1 ≤ ait ≤ ā , which are the productive sugarcane field states, the farmer can either keep
the current field, replant or switch to other use. In this case, the value function is

Vθ(ait, wit, εit) = max {π(ait, wit, keep; θ) + εit(keep) + ρE [Vθ(min{ait + 1, ā}, wit+1, εit+1)|wit] ,

π(ait, wit, replant; θ) + εit(replant) + ρE [Vθ(1, wit+1, εit+1)|wit] ,

π(ait, wit, out; θ) + εit(out) + ρE [Vθ(0, wit+1, εit+1)|wit]} . (5)

Assumptions 1 and 2 imply the expected continuation value does not depend on the present
unobserved state εit. Moreover, by Assumption 2, current choices do not alter the distribution
of wit+1 conditional on wit. Let vθ(ait, wit, qit) be the deterministic component of each choice’s
value, that is,

vθ(ait, wit, qit) = π(ait, wit, qit; θ) + ρE [Vθ(ait+1(ait, qit), wit+1, εit+1)|wit] ,

where ait+1(ait, qit) denotes the deterministic age transition given current age and choice. The
optimal choice, or policy function, is given by:

q?θ(ait, wit, εit) = arg max
q
vθ(ait, wit, q) + εit(q).

Since εit is unobserved to the econometrician, given observed state variables and param-
eters θ, we are not able to precisely determine the optimal choice. We can only recover a
conditional choice probability (CCP) given the unobserved state distribution:

Pr(q|ait, wit; θ) =
ˆ

1{vθ(ait, wit, q) + εit(q) ≥ vθ(ait, wit, q′) + εit(q′) for all q′}dG(εit).

Assumption 3. εit(q) is independently and identically distributed across alternatives with
type 1 extreme value distribution.

Assumption 3 implies the CCP has the usual logit form:

Pr(q|ait, wit; θ) = vθ(ait, wit, q)∑
q′ vθ(ait, wit, q′)

. (6)

The CCP is the basic building block of the likelihood approach I use to estimate the
model’s vector of parameters θ. Aguirregabiria and Mira (2010) provide a great review of
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dynamic discrete choice models and estimation methods available.

4 Data and descriptive analysis

I combine data from several sources to estimate the model. Here I present these data and
provide a brief discussion of key stylized facts. I begin by describing the construction of the
panel dataset of sugarcane land use. Next, I describe the construction of the distance measure
and transportation costs, followed by a brief description of other covariates and its sources.
Details are left to Appendix A.

4.1 Tracking sugarcane fields

I use a remote sensing dataset of sugarcane field activity to build the panel of field age {ait}i,t.
The CANASAT project mapped sugarcane fields and replanting decisions in the Center South
region of Brazil for all years between 2004 and 2012 (Rudorff et al., 2010). The maps created
by the CANASAT project are very detailed and sugarcane fields vary in shape and size.

I built the panel dataset of sugarcane activities by creating a 1 km grid of points covering
all the region of interest and tracking land use decisions for each point of the grid over time.7

The grid extends all geographical micro regions8 with sugarcane fields in any sample period
year. This procedure creates 1,855,224 grid points.

There was a substantial expansion in sugarcane acreage over this sample period. In 2004,
less than 1% of the grid points were sugarcane fields. In 2012, this share increased to more
than 4%. Almost half of the sugarcane fields in the region are in the State of São Paulo,
which has 25% of its territory covered by sugarcane.

Figure 2 shows one specific producing area in detail. The shapes in the figures are sugar-
cane producing fields. They are colored according to the classification given by the CANASAT
project. “Ratoon” refers to sugarcane that has not been replanted in the previous cycle; “re-
planted” refers to fields that were replanting in the previous cycle; while “replanting” refers
to fields being replanted in the current cycle; finally, “expansion” refers to new fields that are
for the first time available for harvest.

Land use decisions are tracked for each grid point over time, creating a panel data of
sugarcane land use. Figure 3 shows the fraction of fields replanted by field age for various
cohorts. The observed mode of replanting is 6 years, which is consistent with industry descrip-
tion of replanting decisions. Replanting at higher ages is also frequent, even though not the

7There is no standard way in which this grid should be constructed. As discussed in Scott (2013a), there is
a trade-off between oversampling and the amount of extra information a thinner grid would provide. I know
of no existing result on the optimal way of sampling grid points for this type of problem. I believe that the
1km choice of grid sparsity is a reasonable compromise between these two forces.

8Micro regions, defined by the Brazilian Institute of Geography and Statistics, are a disjoint set of munici-
palities with common social and geographical characteristics.
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Figure 2: Sugarcane fields in detail

(a) 2011
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(b) 2012

Legend
Sugarcane State 2012
StateCode

Expansion
Replanting
Ratoon
Replanted
Grid points

Notes: Maps showing a small fraction of the sample region for two different years (2011 and 2012) for illustrative
purposes. The dots in both maps represent the grid points for which sugarcane activities are tracked over time.
Colored shapes represent the different classifications given by the CANASAT project.
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Figure 3: Replanting age by cohort
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Note: Fraction of existing sugarcane fields that are reported as replanting in each age for different cohorts by
the CANASAT project. The year assigned for each cohort represents the first year the field was available for
harvest.

recommended practice by agronomists, who recommend replanting be done not after 5 years.
This suggests that achieving higher yields would be possible by increasing the replanting rate.

There is an important caveat about the remote sensing information. Keeping track of the
replanting decision requires the observation of more subtle variation in the satellite imagery
at specific moments in the year than what is required to simply identify a sugarcane field.
Depending on the variety used or on the time of the year replanting is done,9 the imaging
process may fail to identify the replanting activity. So it is expected that some fields are
erroneously coded as not replanting in a given year, when in fact they were replanted. I deal
with this issue explicitly when estimating the model.

4.2 Distances and transportation cost

I use data on the Brazilian road network from the Ministry of Transportation and the average
speed on each road type to adjust for road quality. This allows me to measure road distance
between two points taking into account the quality of the road network on the optimal path.
More details about the construction of this transportation network are provided in Appendix
A.2. Figure 4 shows the map of the available road network in the Center South Region. The
network is more dense close to the shore and becomes more sparse as we move further into

9In general mills have excess capacity in non-harvest months, so it is not uncommon for some fields to be
harvested slightly off season.
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Figure 4: Road Network
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Notes: Map of the road network for South Central Brazil. Own elaboration with road data from the Ministry
of Transportation.

the hinterland.
The first use of this distance measure is to compute, for each year, the distance of every

grid point to the current closest sugarcane field (variable dit). Figure 5 shows the relation
between proximity of existing sugarcane fields and the decision to plant sugarcane for the first
time. There is a sharp decline in the probability of sugarcane adoption as we move away from
existing fields. This suggests a sluggish pattern of sugarcane expansion, as new sugarcane is
usually planted very close to existing fields.

I further use the transportation network to compute transportation costs from every point
in the grid to the closest maritime port. I complement the transportation network with actual
freight quotes to estimate a simple model of transportation costs. I use freight quotes from
SISFRECA (2008), which surveyed transportation quotes for moving sugar from 177 origins
to one of three destination ports (Paranaguá, Guarujá and Santos).

The transportation cost model assumes a linear pricing schedule for freight rates. There
is a fixed rate FC independent of distance traveled and a per kilometer on highway rate V C.
Equation 7 describes the total cost of moving commodities from location i to j.

TCij = FC + V C × EffectiveDistanceij + νij , (7)

where EffectiveDistanceij is on highway equivalent distance between i and j, and νij is an
error term, assumed exogenous. I compute effective distances for each one of the 177 origin-

14



Table 1: Transportation cost (2010 US$)

Estimate Std. Err.
FC 18.241 1.472
V C 0.039 0.003
N 177

Notes: Estimated parameters and standard errors from the transportation cost model - Equation (7). Depen-
dent variable is transportation cost between cities from SISFRECA (2008). Regressors are the corresponding
effective distances computed using the road network from the Ministry of Transportation and average traveling
speeds from SISFRECA (2008), details for the computation of effective distances in Appendix A.2.

destination pairs using the constructed transportation network and estimate fixed and variable
costs in equation (7). Results are shown in Table 1. I estimate a US$18.24 fixed cost and
US$0.039 per kilometer on highway variable cost of moving one tonne of sugar.

Finally, I compute the effective distances from every point in our grid to the closest
maritime port. I consider as available ports all ports, that according to the Ministry of
Transportation had reported any trading of sugar or ethanol. I use the estimated model
and these effective distances to calculate transportation costs for all grid points (variable
tci). Figure 5 shows that grid points with a lower transportation cost to ports had a higher
conditional probability of planting sugarcane.

4.3 Other field characteristics

I use as sugarcane potential yield, ysi , the agro-ecological potential yield from FAO/IIASA
(2011). FAO provides high-resolution potential yield for a variety of crops for all regions of
the globe. Those potential yield measures take into account a wide range of soil and climate
characteristics relevant for agricultural productivity. Figure 5 shows the relation between
the measure I use of sugarcane potential yields and sugarcane planting. The conditional
probability of sugarcane planting increases sharply for at values of potential yields above
7 ton. DW/ha. The variation in potential yields shifts the agricultural profitability in a
similarly to permanent price changes. Therefore, this variation will be valuable to estimate
the effects of counterfactual permanent price increases. The noticeable decline in planting at
very high yields highlights the importance of accounting for alternative land uses, as potential
yields for different crops are correlated.

The dataset used to estimate the model is complemented with extensive information on
land characteristics described in Table 2, such as climate variables and elevation. Informa-
tion on previous land economic use (variable hi) is from Ramankutty et al. (2010a) and
Ramankutty et al. (2010b), which classified all land in the globe into cropland and pasture.
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Figure 5: Conditional probability of sugarcane expansion
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chosen using the rule of thumb at 1.06 × σx × N−1/5. Dotted lines are pointwise 95% confidence intervals
computed by bootstrap.
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Table 2: Field characteristics

Variable Mean Std Min Max p20 p50 p80
Sugarcane pot. Yield (kg DW/ha) 5791 2273 0 12305 3823 5933 7641

Corn pot. Yield (kg DW/ha) 4247 1971 127 11560 2658 3807 5994
Soy pot. Yield (kg DW/ha) 2546 767 0 4443 1943 2645 3241

Transportation cost (US$/ton) 66 26 21 125 42 62 93
Dist. to closest sugar field (km) 217.5 256.9 1.0 1589.2 29.1 133.6 335.9

Share in cropland 0.10 0.16 0.00 1.00 0.00 0.03 0.16
Share in pasture 0.43 0.28 0.00 1.00 0.13 0.44 0.70

Elevation (m) 518 245 0 2260 305 492 732
Prec. growth season (mm) 195.4 44.7 103.8 310.3 153.0 190.8 235.7

Notes: Descriptive statistics of field characteristics. There are 1,855,224 fields (or grid points) in the sample.
The characteristics summarized above are available to all fields. Sugarcane, soy and corn potential yields are
agroecological potential yields (high inputs) from FAO/IIASA (2011). Transportation cost and distance to
closest sugarcane fields are own elaboration (discussed in text and Appendix A.2) using Ministry of Trans-
portation data on roads and survey information from SISFRECA (2008). Cropland and pasture land cover
information are respectively from Ramankutty et al. (2010a) and Ramankutty et al. (2010b). Climate and
elevation data are from Hijmans et al. (2005).

This is a cross-section data on land use for the year 2000.10 I note the higher average share of
pasture (0.43) in our sample area, which has led many11 to believe that most of new sugarcane
fields would replace old pasture.

4.4 Prices

As argued in Section 2, I consider one single market for sugarcane final products, that includes
both sugar and sugarcane ethanol. I use the NYSE price of sugar as the reference final product
price. This was was pointed as the relevant reference price for decision making in industry
discussions. The converted price series to Brazilian Reais (R$) is shown in Figure 6. The
observed up and downward swings in prices provide variation in agricultural profitability that
is helpful for the estimation of the model.

Equation 8 defines the return index for land not planting sugarcane. It is a weighted sum
of the return of alternative agricultural commodities, with the weights given by the relative
importance of those other crops in the field region:

rit =
∑

c∈{corn,soy}
pctα

c
iy
c
i , (8)

10Unfortunataly, there is no panel remote sensing information that I know of for other crops or pasture for
this region, except for sugarcane.

11See for example EPA (2010).
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Figure 6: pst (sugar price) and rit (other uses return) series

1995 2000 2005 2010 2015
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
Sugar price − Sugar #11

Years

R
$/

lb
.

1995 2000 2005 2010 2015
0

1000

2000

3000

4000

5000

6000
Other uses return − Different estimation bins

Years

R
$/

ha
.

Notes: Prices used are NYSE future contracts (SB1 for sugar, C1 for corn and S1 for soy) all measured in 2010
Reais (R$/lb), deflated using US and Brazilian CPI. All series from 1995 to 2013.

where pct denotes the price of crop c, αci is a measure of the share12 of crop c in the region of
field i and yci is the FAO/IIASA potential yield of crop c in field i. Corn and soy correspond
to more than half the cropland not in sugarcane in this region. Note that this is a continuous
state variable since potential yield measures are continuous. For practical estimation purposes,
I bin the grid points based on cross section categories for rit based on the expected returns
for the alternative crops. Figure 6 plots the index rit over time for the different estimation
bins.

5 Estimation

I estimate the parameters in the model by Maximum Likelihood. The goal of the estima-
tion is to recover the vector of parameters θ from observed states {wit, ait}it and decisions
{q̃it}it, where I make the distinction between observed decisions q̃it and actual decisions qit.
This distinction will be more clear shortly. Assumption 2 implies that the evolution of the
exogenous state does not depend on current endogenous states or field management decisions.

12Shares of land used for corn and soy are obtained from the 2006 Agricultural Census and refer to Meso
Administrative Regions in the Brazilian Institute of Geography and Statistics (IBGE) classification.
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Therefore, we can write the conditional log-likelihood criterion function as

L(θ; {q̃it, wit, ait}it) =
∑
t

∑
i

log f(wit|wit−1; θ) +
∑
i

log (Pr(q̃i|wi, ai; θ)) , (9)

where I omit the subscript t to denote the whole vector of decisions and states.
Note that the only exogenous state variables in wit that change over time are (pst , rit). For

estimation purposes, I assume (pst , rit) follow an AR(1) process:

[
pst

rit

]
=
[
ks

kri

]
+
[
λs 0
0 λri

] [
pst−1
rit−1

]
+ ηt, (10)

where

ηt ∼ N
(

0,
σ2
s 0

0 σ2
ri

)
.

The exogeneity of the wit transition implies that we can estimate k, λ and σ in a separate
first step. I then treat those parameters as known when maximizing the second term in the
likelihood function (equation 9) with respect to the payoff parameters. This procedure is
discussed in more detail now.

The remote sensing exercise may fail to capture replanting if it happens in an unusual
period of the year or depending on the sugarcane varieties used. This creates classification
error, as some fields will be classified as not replanting, q̃ = keep, when indeed replanting
happened. If a field is not coded as replanting, I cannot be sure this actually reflects classifi-
cation error or just a long sugarcane cycle. If left untreated, this issue could bias upwards our
estimated cost of field replanting. I treat classification error as a field specific unobserved state
ui ∈ {1, 2}. If ui = 1, there is no classification error on field i remote sensing observations.
In this case, q̃it = qit, i.e., observed and actual decisions are the same. If ui = 2, replanting
decisions on field i are not observed, that is, q̃it = keep even when qit = replant. Note there
is only classification error for replanting, the decision to plant sugarcane is not subject to
observational problems. I assume Pr(ui = 1) = µ for all i. We can write the conditional
probability of observed choices as:

Pr (q̃i|wi, ai; θ) = µ
∏
t

Pr (q̃it|wit, ait, ui = 1; θ) + (1− µ)
∏
t

Pr (q̃it|wit, ait, ui = 2; θ) . (11)

The choice probability Pr (·|wit, ait, ui = 1; θ) is exactly the model’s CCP (equation 6) for
all ait ∈ {0, 1, . . . , ā}, since in this case there is no classification error. However, Pr (·|wit, ait, ui = 2; θ)
is only equal to the model CCP when ait = 0, that is, for fields not planting sugarcane. For
ait > 0 and ui = 2, only q̃it = keep is coded, so Pr (keep|wit, ait, ui = 2; θ) = 1.

The model’s CCP depends in principal on the full solution of the dynamic discrete choice
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problem since vθ(ait, wit, q) depends on the continuation valueE [Vθ(ait+1(ait, qit), wit+1, εit+1)|wit].
Solving the dynamic discrete choice problem by value function contraction at every different
likelihood evaluation is computationally demanding. I use the Nested Pseudo Likelihood
(NPL) method proposed by Aguirregabiria and Mira (2002) to circumvent this problem. In-
stead of solving the dynamic problem at every different likelihood evaluation, this method uses
a single contraction in the space of CCPs. I embed the NPL algorithm with an Expectation
Maximization (EM) step to account for classification error following Arcidiacono and Miller
(2011).

Standard errors for payoff parameters are computed by bootstrap. The bootstrap proce-
dure follows the estimation steps. For each bootstrap repetition, I re-estimate transportation
costs to ports using a bootstrap sample of freight quotes. Additionally, I re-estimate the tran-
sition process (equation 10) using a parametric bootstrap sample of prices. I then re-estimate
the full model with a block bootstrap sample of observations. I discuss estimation details in
Appendix B.

5.1 Estimation results

Table 3 shows the estimates for the processes in equation (10). In the first column we present
the bin number for each category of rit. The second and third column show the values of the
weighted yields for corn and soy that define each bin. The other columns show estimates and
standard errors for the auto-regressive processes. The estimated transition for pts is shown at
the bottom of the table.

There is no sign of violation in the stationarity assumption in any of the processes, even
though standard errors are relatively high. There is a trade-off here between using a longer
price series in dollars and a shorter series measured in the Brazilian currency, Real (R$), which
was only adopted in 1994. I opt for the second, since this seems to be the appropriate reference
price, especially in terms of volatility, for decision makers in this market. Moreover, it is not
clear that using very old price information adds much to the analysis given changes in market
dynamics in recent decades.13 The cost of relying on relatively recent price information is a
short time series. Imprecision in the estimation of those processes will be taken into account
when we compute standard errors for the dynamic model estimates.

In the model section, the functional form for the cost of sugarcane planting, ΨE(hi, dit; θ),
was left unspecified. In estimation, I use the following empirical specification for this cost:

ΨE(hi, dit; θ) =
∑

l={crop,pasture,other}
ψlh1{hi = l}+ ψ1

ddit1{dit ≤ 40}+ ψ2
d1{dit > 40}. (12)

13For instance, it was common in the past to observe price spikes whenever there were stock-outs (Deaton
and Laroque, 1992). Those type of stock-outs were not seen in recent decades.
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Table 3: Exogenous state variables transition (std. err.)

(a) rit transition

Est. Bin kri λri σ2
ri

1 0.241 (0.144) 0.604 (0.228) 0.010 (0.004)
2 0.396 (0.233) 0.561 (0.251) 0.022 (0.009)
3 1.208 (0.686) 0.486 (0.285) 0.160 (0.065)
4 0.524 (0.307) 0.621 (0.213) 0.051 (0.024)
5 0.665 (0.396) 0.603 (0.228) 0.073 (0.034)
6 1.444 (0.841) 0.537 (0.262) 0.264 (0.111)
7 0.793 (0.462) 0.624 (0.209) 0.122 (0.057)
8 0.929 (0.550) 0.614 (0.220) 0.153 (0.071)
9 1.681 (0.990) 0.564 (0.250) 0.392 (0.170)

(b) ps
t transition

ks λs σ2
s

0.161 (0.087) 0.482 (0.278) 0.003 (0.001)

Notes: Estimation of the transition process in equation (10). Standard errors (asymptotic) in parenthesis.
Prices used are NYSE future contracts (SB1 for sugar, C1 for corn and S1 for soy) all measured in 2010 Reais
(R$/lb), deflated using US and Brazilian CPI. All series from 1995 to 2013.

Table 4 shows the results from the NPL estimation of the payoff functions (equations 2
and 3) and fixed cost parameters. I find a steep rate of yield decay from sugarcane field age of
0.79, which represents an expected yield half life of approximately 3 seasons. Current available
information about yield decay for sugarcane is restricted to surveys for specific regions and
years. For instance, Crago et al. (2010) finds a less steep yearly decay rate of 0.86 using
survey information restricted to the state of São Paulo in 2007. Their assessment, however,
only considers the first 5 harvests. Taking into account that replanting takes one season, a
decay rate of 0.79 implies that the replanting age that maximizes average expected yields is
3 years. This is in line with recommended agronomic practices, that suggest 3 years as a
minimum age for field replanting. However, given the positive fixed cost of replanting, we
rarely see such short sugarcane cycles, as observed in Figure 3.

I estimate a lower conversion cost for land previously being used for crops in comparison
to land used for pasture or in other use. Consistent with descriptive evidence discussed before,
I find a high penalty in the cost of planting sugarcane from the distance to existing sugarcane
fields. This penalty implies that the increase in fixed cost associated with moving away from
existing sugarcane fields by only 10 km is approximately 40% of the revenue associated with
the first sugarcane cut of an average sugarcane field.
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Table 4: Payoff and fixed cost estimates

Parameter Estimate Std. Err. Parameter Estimate Std. Err.
γ 0.791 0.013 ψotherh 3.401 0.909
δ 0.052 0.021 ψpastureh 3.301 0.913
κ 0.692 0.053 ψcroplandh 3.142 0.897
β ψ1

d 0.062 0.003
Elevation -0.267 0.019 ψ2

d 3.581 0.104
Elevation sq 0.033 0.003 ΨA 6.262 1.006

Prec. Growth -0.178 0.050 ΨR 5.067 0.125
Prec. Growth sq. 0.022 0.006 µ 0.7528 0.000

Notes: Estimates and standard errors for payoff and fixed cost parameters in equations (2) and (3). Estimation
by ML using the NPL algorithm. Standard errors computed by bootstrap.

6 Counterfactuals

6.1 Counterfactual elasticities

I use the estimated model parameters to compute a supply elasticity from permanent price
changes, which is then decomposed in yield and acreage components. There is a challenge in
evaluating responses to permanent price changes in this setting. The importance of proximity
to other fields for sugarcane adoption creates path dependence in the expansion pattern of
new sugarcane fields. Therefore, initial conditions matter to determine the system evolution.
Motivated by this, I compute price elasticities in the following way. Starting from the current
state of all fields in the sample at the last year available (2012), I simulate a small 1% price
increase in the average of the process governing the evolution of sugar price. I compare the
evolution of this system under the new price regime to the baseline case of no price increase
to calculate acreage and yield effects attributable to the price increase. The acreage effect
refers to the additional number of grid points in sugarcane in the counterfactual simulation
in comparison to the baseline case. The yield effect refers to the change in average output
per field that follows the price increase.

Long-run supply side elasticities are reported in Table 5. I find an acreage elasticity ξL of
4.3, which is 16 times higher than the estimated yield elasticity ξY , for which I find a value of
0.27. This acreage to yield elasticity ratio means that, at the margin, only 6% of the increase
in long-run supply comes from higher yields, the other 94% comes from acreage expansion.
The combined effect of acreage and yield elasticities translates into a supply elasticity of 4.6.

The small contribution of yields at the margin does not mean the yield effect generated
by a more intensive pattern of replanting studied here is small. In fact, the yield elasticity
ξY is actually in the ball park of estimates for different crops.14 The novelty here is actually

14There is little consensus however on the magnitude of yield elasticities. Scott (2013b) uses indirect evidence
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Table 5: Long-run elasticities

Supply ξS 4.6158
Acreage ξL 4.3372

Yield ξY 0.2721

Notes: Long-run supply elasticities computed by simulating (2000 simulations) the evolution of the fields in
our dataset after a 1% price increase.

the very high acreage elasticity. In comparison, Miao et al. (2015) find a corn yield elasticity
of 0.23 and an acreage elasticity of 0.45 using US data. In the context of global agriculture
supply, Roberts and Schlenker (2013) find a much lower acreage elasticity of 0.1. Using a
forward looking model of land use in the US, Scott (2013a) finds a higher acreage elasticity
of 0.3, still much lower than the value found here.

Three effects combine to determine the high acreage elasticity for sugarcane in Brazil I
document here in comparison to other studies of land use. First, I use a dynamic model to
derive the long-run elasticity, while some of the previous studies have only focused on short run
acreage responses (Roberts and Schlenker (2013), Miao et al. (2015)). In this sense my results
go in the same direction as Scott (2013a), who finds higher acreage price elasticity once forward
looking behavior is taken into account. Second, as in Miao et al. (2015), this paper focuses on a
single crop, so there is the possibility of cross crop substitution. This is in contrast to Roberts
and Schlenker (2013) and Scott (2013a), which aggregate agricultural markets and consider
responses to an aggregate price index. Third, Brazil has a very active agricultural frontier,
with large extents of undeveloped land, still shy from realizing its agricultural potential.

In this sense, my results highlight the pitfalls of extrapolating cross-country measures of
acreage elasticity to study land use. Using the acreage elasticity estimated by Scott (2013a)
for the US in our analysis would imply that 45% new ethanol at the margin would come from
the intensive margin. This would imply less expansion in farmland as we move along the
supply curve and thus a downward bias in expected deforestation.

Figure 7 shows the evolution of output, acreage and yield elasticities in the first years after
the permanent price shock. The permanent price change encourages expansion of sugarcane to
new areas. The expansion of sugarcane in comparison to the baseline translates into acreage
elasticities reported in Figure 7. Those new sugarcane fields have higher expected yields
than the average pool of sugarcane fields, so yield elasticity jumps in the first periods. As
those new areas age, the yield elasticity converges to its long-run value, which reflects the more
intensive pattern of replanting that follows the permanent price increase. The output elasticity

from fertilizer use and finds that yield elasticities for corn are unlikely to be larger than 0.04. Miao et al. (2015)
presents a good summary of other results in the literature, which range from not statistically significant to
0.61, depending on the crop studied and methodological approach.
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Figure 7: Elasticities on the path to the long-run
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Notes: Output, yield and acreage elasticities path to long-run. Elasticities computed by simulating (2000
simulations) the evolution of the fields in our dataset after a 1% price increase.

combines the effects of yield and acreage elasticities. This explains why the output elasticity
is steeper than acreage elasticity in the first periods and the faster speed of convergence to
the long-run, in comparison to acreage. Although, the focus of this paper is not the short-
run dynamics of this market, it is still interesting to note how the yield and acreage effects
studied here combine in the short-run to generate a faster response of output in comparison
to acreage.

6.2 Deforestation and carbon “payback” times

The acreage and yield elasticities reported in Table 5 suggest that almost all new sugarcane
produced following demand shifts in ethanol would come from new growing areas (extensive
margin) and not from more intensive replanting cycles (intensive margin). This is a reason
for environmental concern, since land use change accounts for a significant part of world
greenhouse gas emissions.15

In fact, most of the controversy regarding the use of ethanol biofuels comes from the trade-
off between the one-shot emission from land conversion and the carbon emissions avoided over

15According to IPCC (2014), deforestation accounted for 12% of global anthropogenic CO2 emissions.
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time by replacing fossil fuels by a renewable source. A standard measure used to describe this
trade-off is the carbon payback time, i.e., the time it takes for the benefits from replacing
fossil fuels to compensate the land use change emissions.16 For the case of sugarcane ethanol
there is little consensus for carbon payback times. This could vary from 5 to more than 100
years, depending on assumptions regarding the type of land cover substituted by sugarcane
(Searchinger et al. (2008), Elshout et al. (2015), Gibbs et al. (2008), Fargione et al. (2008)).
If the land converted to sugarcane fields comes from areas of natural cover with high carbon
storage, e.g., tropical forests, the carbon payback time is going to be high. In turn, if land
with a lower carbon retention is converted, e.g., cropland and pasture, the carbon payback
time will be smaller.

I use the estimated model to predict the direct effect of sugarcane expansion in different
natural ecosystems from permanent price shifts. Table 6 shows a decomposition of acreage
changes on different areas of natural cover and on existing cropland and pasture. The first
column reports acreage elasticities of sugarcane for the different land covers. The second
column reports the share of sugarcane predicted by the model in the long-run. The second
to last column shows the share of each type of land converted to sugarcane at the margin in
the long-run.

The last column in Table 6 reports expected carbon emissions from each natural cover
for an 1 km2 sugarcane expansion at the margin.17 Even though the Cerrado region is the
one with the highest predicted decrease in natural cover, emissions of the same magnitude
are predicted to come from land conversion of the two ecosystems connected to the Amazon
rainforest, the Madeira-Tapajós and Mato Grosso seasonal forests. This reflects the higher
carbon density in the Madeira-Tapajós and Mato Grosso forests compared to the Cerrado.

A few caveats are in order. First, the model does not distinguish between areas of nat-
ural cover and cleared areas not in cropland or pasture. The predicted expansion reported
ignores specific fixed costs of land clearing and environmental regulation that could restrict
deforestation. In this sense, my measure of deforestation and carbon emissions are worse case
scenarios. However, this is not the case for pasture and cropland conversion to sugarcane, as
I allow the fixed cost of sugarcane planting to vary depending on these two types of land use.
Moreover, my analysis focuses only on the Center-South region of Brazil, which includes only
the Southern fringe of the Amazon rainforest, which is likely to be the most affected by the
expansion of farmland. For a specific treatment of the demand for deforestation in the entire
Brazilian Amazon rainforest, see Souza-Rodrigues (2015).

The carbon emission reported in Table 6 represents only direct deforestation by sugarcane
expansion, which could be aggravated by indirect land use substitution. Note that, out of

16It is important to note that the carbon payback time is not a sufficient measure for a normative analysis.
However, several studies of biofuels have used this measure, allowing for comparison across studies.

17The assessment of carbon emissions comes from IPPC guidelines for the evaluation of emissions from land
use change (IPCC, 2006); I leave the details of this computation to Appendix C.
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Table 6: Acreage elasticity decomposition

Acreage Baseline Total Area Share of ∆ Carbon
Elasticity Share km2 Expansion (ton CO2)

Wild area classes
Cerrado 5.14 0.074 159,927 4.7% 2,204

Chiquitano dry forest 5.62 0.073 23,571 0.8% 353
Madeira-Tapajós forest 4.25 0.132 81,611 3.5% 2,499

Matogrosso forest 5.52 0.171 45,449 3.3% 2,345
Atlantic forest 2.63 0.393 867 0.1% 49

Total wild 311,425 12.3% 7,451
Cropland vs. Pasture

Pasture 4.10 0.187 799,467 47.4%
Cropland 4.71 0.217 188,335 14.8%

Notes: Baseline Share refers to the share of sugarcane in each land class predicted in the long-run. Share of
Expansion refers to the share of marginal sugarcane acreage increments that come from different types of land
cover. ∆Carbon gives predicted emissions (in tonnes of CO2) from land use change in different wild covers
from a 1 sq. km increase in sugarcane acreage. See Appendix C for details on the computation of carbon
emissions.

sugarcane expansion at the margin, 62% is expected to come from areas already in some
economic use, either in cropland or pasture. The substitution of these areas for sugarcane
will arguably decrease the supply of agricultural products and may cause additional defor-
estation as prices of those products increase. The amount of additional land use change from
this indirect channel will crucially depend on the relative importance of demand and supply
elasticities for the agricultural commodities displaced. Estimates in the literature for those
elasticities (Roberts and Schlenker, 2013) suggest that 2/3 of productive areas displaced by
sugarcane could move further into the agriculture frontier, causing additional deforestation.18

In order to put those values of carbon emissions from land use change in perspective,
one should consider the carbon that could be saved over time by replacing fossil fuels by
sugarcane ethanol. Not taking into account emissions from land use change, sugarcane ethanol
is supposed to avoid 84% of carbon emissions from gasoline, or 1, 979 kg CO2 equivalent per
m3 (Macedo et al., 2008). This measure already includes the use of fossil fuels and energy in
the several stages of the production of sugarcane ethanol, including farm operations and the
manufacturing of ethanol from sugarcane.

I balance the carbon that is expected to be released by direct and indirect deforestation
with the carbon saved by fossil fuel substitution to compute long-run carbon payback times

18There is little evidence however on the direct relationship between the expansion of sugarcane and defor-
estation in the Amazon region through indirect land use change (de Sá et al., 2013). Nevertheless, this indirect
land use change could happen in other parts of the world if the agricultural commodities affected are traded
internationally.
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Table 7: Emissions and payback time (1,000L new ethanol)

ILUC scenario 0% 66% 100%
CO2 emissions (tonnes) 9.6 41.5 57.9

Payback time (years) 4.8 20.9 29.2

Notes: CO2 equivalent emissions from deforestation and carbon payback times computed under different
assumptions about indirect use substitution. All values computed based on the marginal effects of deforestation
reported in Table 6. The x% ILUC scenarios consider the direct emissions plus the emissions corresponding to
x% of the displaced area in pasture and cropland on areas of natural cover.

for sugarcane ethanol. Table 7 shows payback times for different assumptions on the magni-
tude of the indirect land use change (ILUC). I find 4.8 years payback for sugarcane ethanol,
considering only direct deforestation effects. Assuming that 2/3 of the expansion over other
cropland and pasture converts into further deforestation, I find a higher payback time of 20.9
years. This time could be increased to almost 30 years in the extreme case in which all crop-
land and pasture converted to sugarcane ends up expanding into forests. This extreme case
would only be realized if the ratio between supply and demand elasticities for the commodities
displaced by sugarcane is infinite. This extreme case provides a reasonable upper bound for
the sugarcane ethanol carbon payback time.

The sensitivity of the carbon payback times to indirect land use change computed here
merits extra attention and should be a topic of future research. The deforestation from
indirect land use change might be pivotal in a welfare assessment of sugarcane ethanol policies.
However, the carbon payback times in any scenario are dwarfed compared to US corn ethanol,
which pays back in 167 years (Searchinger et al., 2008). This difference is primarily due to a
lower carbon efficiency in corn ethanol production in comparision to sugarcane.

6.3 Ethanol mandates

In this section I use the estimated model to discuss the effects of biofuels policies. There is a
range of ethanol policies in the world today. Here I focus on the most common ones: those
that shift the demand for ethanol by establishing ethanol blending standards in transportation
fuel. Brazil, like many countries, establishes a fixed proportion of ethanol blend in gasoline.
Although some States in the U.S. have similar rules, the Federal policy establishes only an
aggregate volume of ethanol to be blended to gasoline every year. For simplicity, I study here
the effects of shifts in the demand curve for ethanol that would be implied by those mandates.

There are some important caveats in the analysis that follows. First, the results so far con-
cern only the supply side of sugarcane ethanol. Evaluating the effects of demand shifts in this
market will require some knowledge of the demand side. I do not estimate a demand elasticity
in this paper; instead, I rely on existing results from the literature and assess the robustness
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Table 8: U.S. 2007 Renewable Fuel Standard (Billions of gallons)

Total Advanced Cellulosic
volume biofuels biofuels

2014 18.15 3.75 1.75
2018 26 11 7
2022 36 21 16

of my findings. Second, I estimate the long-run price increase that follows the demand shift
using a static equilibrium model. This is in contrast to my measure of supply elasticity that
was derived using a dynamic model. I believe that a static equilibrium framework provides a
parsimonious environment to study the long-run effects of ethanol mandates.

As an illustrative policy experiment, I consider the effect of the 2007 EISA,19 which
establishes increasing mandates for ethanol in a nested system. EISA sets an increasing total
mandate for renewable fuels from 18 billion gallons in 2014 to 36 billion gallons in 2022 but
is subject to EPA rulemakings, which can allow for lower standards each year.20 Table 8
describes the mandated volumes of biofuels for selected years. The first column shows the
total volume of biofuels to be blended. The second column defines the amount that must
be met with advanced biofuels and the third column, the amount of the advanced biofuels
mandate that must be met by cellulosic biofuels.

In order to meet the mandate, biofuels must achieve at least a 20% reduction in life cycle
greenhouse21 emissions in comparison with gasoline and diesel. Under the non-advanced
biofuel category falls almost all corn based ethanol produced in the US. Advanced biofuels
must achieve at least a 50% reduction in greenhouse gas emissions in comparison with fossil
fuels. Finally, cellulosic biofuels refer to biofuels derived from any cellulose that achieve a 60%
gain in terms of greenhouse gas emissions. There was not much interest from the private sector
in cellulosic ethanol mainly because the necessary conversion technology is still too costly for
large scale application (Bracmort, 2012). As consequence, EPA has been continuously using
its statutory authority to the waive cellulosic biofuels mandate on the basis of “insufficient
supply.”

Brazilian sugarcane ethanol is classified by the EPA as an advanced biofuel. In fact, it
19Energy Independence and Security Act.
20The EPA has the stutory authority to waive the biofuels mandate in the cases of “insufficient supply” or

“economic harm.” For example, in 2014 the EPA set the final volume of ethanol in the standard to 15.9 billion
gallons, below the volume predicted in EISA. It is likely that EPA will continue to set lower stadard volumes
of ethanol in the following years.

21According to EISA 2007 sec. 201, “‘lifecycle greenhouse gas emissions’ means the aggregate quantity
of greenhouse gas emissions (including direct emissions and significant indirect emissions such as significant
emissions from land use changes), as determined by the Administrator, related to the full fuel lifecycle, including
all stages of fuel and feedstock production and distribution, from feedstock generation or extraction through
the distribution and delivery and use of the finished fuel to the ultimate consumer, where the mass values for
all greenhouse gases are adjusted to account for their relative global warming potential.”
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Table 9: Effects of sugarcane ethanol mandates

5 billion gallons mandate

Mandate/World output: 6.45%
Mandate/Brazil output: 9.71%

Demand elasticity -0.05 -0.2 -0.9
∆ % price 1.38% 1.33% 1.16%
∆ % yield 0.37% 0.36% 0.31%

∆ Total Acreage (km2) 17,830 17,277 15,093
−∆ Natural (km2) 2,202 2,133 1,864

Notes: Aggregate effects of a 5 billion gallons sugarcane ethanol mandate. Mandate share of world and Brazil
output were calculated using FAOSTAT 2013 information of sugarcane total output and the model baseline
predicted change in Brazilian supply. We use 86.3 L/tonne of cane (Macedo et al., 2008).

is the sole large scale source of Advanced Biofuels in the EPA classification. I consider a
counterfactual shift in the world demand of sugarcane ethanol of 5 billion gallons, which
is the volume in the advanced biofuel category that needn’t be met by cellulosic biofuels
(21− 16 = 5, in 2022, Table 8).

Table 9 shows aggregate effects on prices, acreage expansion and yields in Brazil of a 5
billion gallons mandate of sugarcane ethanol. I use a baseline demand elasticity of −0.2 from
Elobeid and Tokgoz (2008).22 Policy effects are not sensitive to demand elasticities in the
inelastic range. The low price responses and comparatively high acreage responses are driven
primarily by the high acreage to yields elasticity ratio I find. This analysis suggests that a 5
billion gallon mandate, which is equivalent to about 3% of US gasoline consumption, could
imply about 2,000 sq. kilometers in direct deforestation. Following the previous analysis of
indirect deforestation, this could be magnified to 9,000 sq. kilometers if indirect effects are
considered.

7 Conclusion

This paper studies the economics of land use for the sugarcane ethanol production to quan-
tify the environmental effects of biofuel policies. The expansion in ethanol production may
endanger tropical forests, which could offset the carbon savings accrued over time by the
replacement of fossil fuels. I use a dynamic model of land use that encompasses both adop-
tion of sugarcane and replanting decisions, which is crucial to disentangle acreage and yield
responses to policy changes.

I find a high acreage-price elasticity, which implies much higher acreage to yield elasticity
ratios than found in previous studies. The results suggest that ad-hoc assumptions on the

22Roberts and Schlenker (2013) find a comparable values of demand elasticities for agricultural products.
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pattern of land expansion can severely bias the evaluation of the merits of sugarcane ethanol
as a greener replacement for fossil fuels. The most detrimental environmental effects from
biofuels demand shifts come from land use change associated with an expansion of biofuels
crops. If the acreage to yield elasticity ratio is low, there is scope for yields to absorb the
increase in demand. However, if the acreage elasticity is higher than the yield elasticity, the
increase in ethanol supply comes primarily from new producing areas.

In the case of Brazilian sugarcane ethanol, I find that the extensive margin (acreage)
dominates the intensive margin (yield). This results in large acreage expansion following
an increase in feedstock demand and a comparatively small increase in yields. I use the
high-resolution nature of the dataset and the estimated model to predict the direct effects
on natural land cover and associated carbon emissions. I discuss how indirect deforestation
caused by crop and pasture substitution could aggravate land use change emissions. I find
lower carbon payback times for sugarcane ethanol compared to US corn ethanol, but these
are somewhat sensitive to the importance of indirect land use change, which points in the
direction of important future research.
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Table 10: Sugarcane fields in Center South Brazil

State MG SP PR MS MT GO Total
2004 699 9936 311 155 231 699 12031
2005 1618 15749 1298 598 726 1299 21288
2006 2928 24498 2480 1180 1096 2200 34382
2007 4469 33088 3657 2218 1538 3625 48595
2008 5563 37018 4162 3480 1857 4877 56957
2009 6240 39520 4414 4318 2001 5673 62166
2010 6931 41619 4572 5104 2081 6390 66697
2011 7819 44457 4884 5930 2234 7542 72866
2012 8790 48466 5297 7011 2516 8945 81025

# Grid points 398489 200963 106363 311772 511391 326246 1855224

Notes: Grid points with sugarcane fields by State and year. State abbreviation: MG, Minas Gerais; SP, São
Paulo; PR, Paraná; MS, Mato Grosso do Sul; MT, Mato Grosso; GO, Goiás.

Appendix

A Data

A.1 Panel of sugarcane land use

I create a 1km grid of points encompassing all micro-regions in Center South Brazil that had
reported sugarcane areas in the remote sensing dataset. I exclude urban areas as well as
water bodies, such as lakes and large rivers. Moreover, I exclude grid point in the Pantanal
eco-region. There is a strict ban on sugarcane growing in this area. In fact, I found no reports
of sugarcane growing in this region. The resulting grid extends through 6 States in Brazil.
Table 10 documents the number of grid points planting sugarcane in each State and year.

The remote sensing maps only inform new fields as well as replanting decisions for existing
fields. Therefore I can only track the age of a given sugarcane field if it is a new field in my
sample or if it replants. As it can be noted in Table 10 most sugarcane fields by 2012 were
planted for the first time during the sample period.

A.2 Distances and transportation cost

Using existing road information from the Ministry of Transportation, we build a road
network that covers the entire region of interest. We classify each road type in terms of
average traveling speed of trucks relative to highways (the best road type available). This
gives a measure of relative cost of traveling over each point in the map. We consider 1 km on
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Figure 8: Predicted transportation cost and effective distance
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Notes: Predicted average (per km) transportation cost from the estimated transportation cost equation (7).
Actual average freight rates from SISFRECA (2008) and effective distance measure used in estimation are
shown scattered.

highway to be equivalent to 1.25 km on a major road, 1.66 km on unpaved road and 2.5 km
everywhere else. Those values are informed by Valente et al. (2008), which surveys traveling
speed of different types of vehicles. As an example, suppose the best route between i and j is
1 km on a dirt road, then we consider that effective distance between i and j to be 1.66 km.

From this measure of relative traveling cost, we search for the cheapest path given the
different costs of traversing each parcel. This is implemented using ArcGIS cost distance
tools. For an excellent description of this type of least cost path algorithm, see Allen and
Arkolakis (2014).

Since we use the estimated transportation cost model (equation 7) to extrapolate freight
rates for all points in the grid, it is important that the transportation cost model fits the data
well. In fact, the transportation model fit is reasonably good. Figure 8 examines the fit of
the transportation cost model, where I plot predicted transportation cost by the model in the
solid line and actual quotes.

The calculated map of transportation costs is shown in Figure 9. We can see a big variation
in projected transportation costs to the closest port ranging from US$18 per tonne close to
destination ports to more than US$100 per tonne on the agriculture frontier. I extract the
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Figure 9: Sugar transportation cost to nearest port (tci)
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Notes: Sugar transportation cost (US$/ton) and main destination ports in South Central Brazil. Variable tci

in equation 3. Transportation cost is calculated for each grid point using the estimated transportation cost
model; equation (7) and Table 1.

value of transportation cost from this map for every point in the grid.
A.3 Other land characteristics

Potential yields (yci ). I use agro-ecological potential yields from FAO/IIASA (2011), v3.0.
GAEZ provides potential yield infomation for different levels of input use and irrigation sys-
tem. For all crops, c, I use values for rain-fed and high-input use. Figure 10 depicts the
sugarcane potential yield information. A high yield region is noticeable where most current
sugarcane fields are located in the center of the map. There is also a high yield area to the
north of the map that coincides with the Southern fringe of the Amazon rainforest.

Previous economic use (hi). I use information on previous economic land uses from Ra-
mankutty et al. (2010a) and Ramankutty et al. (2010b). This dataset informs for every point
in the globe a predicted probability that the land is covered by pasture and the probability
the land is covered by cropland. Those probabilities are informed at a 10 km resolution. In
model estimation, I draw for every grid point a land cover (cropland, pasture or other) using
the probabilities informed by the dataset.

Climate and elevation (xi). Climate and elevation are extracted for all grid points from
Hijmans et al. (2005). This is a high-resolution climate dataset with information on monthly
temperature and rainfall. This climate information is too rich to be used fully in estimation.
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Figure 10: Sugarcane potential yield (yis)
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Notes: Sugarcane agro-ecological potential yield (high inputs). Source: FAO/IIASA (2011).

I use averages over the growth (Nov-Apr) and harvest seasons (May-Oct) of those climate
variables climate variables in estimation.

B Estimation

Structural parameters in the payoff functions are estimated using the Nested Pseudo Like-
lihood (NPL) algorithm proposed by Aguirregabiria and Mira (2002). The algorithm is mod-
ified to incorporate misreports in replanting in the spirit of Arcidiacono and Miller (2011).

The processes that govern the evolution of the sugar price and outside options return are
estimated offline. The NPL algorithm builds on the method proposed by Hotz and Miller
(1993), which suggest a clever use of Conditional Choice Probabilities (CCP) to reduce the
computational burden imposed by “full solution” alternatives, e.g., the Nested Fixed Point
algorithm (Rust (1987)).

Aguirregabiria and Mira (2002) show that in many dynamic discrete choice problems there
is a contraction mapping in the space of conditional choice probabilities:23

p = Υθ(p),

where the contraction mapping is naturally dependent on the vector of parameters describing
23This is analogous to the contraction mapping in the space of value functions.
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the optimization problem θ.
The algorithm I use is a modification of NPL proposed by Arcidiacono and Miller (2011)

that is used here to control for misreports in replanting. Given technical difficulties in the
classification of replanting, for some fields that replant will not have this activity coded in
our panel dataset. We consider two types of regime. A field can either not be subject to
misreport in replanting (ui = 1), in which case whenever replanting happens, this activity will
be observed in the dataset, or it can be subject to misreport in replanting (ui = 2), in which
case I will not see replanting in case it happens. There is no indication of classification error in
the adoption of sugarcane. Let µ be the probability there is no classification error. Naturally,
1− µ denote the probability in the population that a field is subject to classification error. µ
is treated as unknowns and estimated by Maximum Likelihood with the other parameters.

I now describe the estimation algorithm. Let q̃i denote the observed decisions for field
i. Start the algorithm at step K = 0 with an initial try of the CCP estimate p0 and for
Pr(ui = ū) = µū0 , for ū ∈ {1, 2}. For every step K ≥ 1,

1. Update each field regime ex-post probability using Bayes rule:

Pr (ui = ū|q̃i, ωi, ai) =
µūK−1pK−1(q̃i|ωi, ai, ū)∑

u={1,2} µ
u
K−1pK−1(q̃i|ωi, ai, u) , for ū = 1, 2.

2. Compute estimates of payoff parameters

θ̂K = arg max
θ

n∑
i=1

∑
ū={1,2}

Pr (ui = ū|q̃i, ωi, ai) ln Υθ(pK−1)(q̃i|ωi, ai, ū). (13)

3. Use estimates θ̂K to update the CCPs:

pK = Υθ̂K
(pK−1).

4. Update µ1 and µ2:

µuK = 1
N

N∑
i=1

Pr (ui = u|q̃i, ωi, ai) , for u = 1, 2.

5. Iterate until convergence in p, θ and µ is reached.

Note that if replanting was observed for a given field i, then pK(q̃i|ωi, ai, 2) = 0, and so
Pr (ui = 1|q̃i, ωi, ai) = 1. Moreover, fields in the replanting classification error regime have,
naturally, zero probability of having replanting coded, hence pK(q̃i|ωi, ai, 2) = 1. Existing
sugarcane fields in the beginning of the sample for which replanting was never observed in the
10 years of data available are treated as being in the classification error state, ui = 2. This
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Table 11: Estimation settings

ρ 0.9
ā 9

Discrete state space:
Transp. cost (R$/lb) 0.027 0.043 0.058 0.084

Dist. to closest sugar field (km) 1.5 9.0 27.5 >40
ys (kg DW/ha) 2119 5089 6601.5 9784.5

Altitude (m) 168.5 414 586.5 1484
Prec. Growth Season (mm) 131.3 174.8 207.0 266.7

ps (R$/lb) 0.188 0.270 0.353 0.435

Notes: Estimation settings for NPL estimation. ρ is the discount factor and ā is the cap in sugarcane field
age. Discretized values for each continuous state variables are shown. With the exception of the distance to
sugarcane fields, all classifications are based in equally sparse quantiles, so bins for each discrete category have
the same number of observations.

avoids an initial condition problem for those fields, as we can only observe a field age ai if i
is a new field or if it replants. Although there are reports of sugarcane fields going more than
10 years without renovation, this is an abnormal situation in this industry.

Intuitively, the algorithm re-weights observations in the likelihood (13), taking into account
the presence of classification error. For instance, a field with an observed old age that has
never replanted will have a lower weight in estimation than a younger field that has never
replanted, conditional on other observables being the same. This is because the former has a
higher ex-post probability of being type u = 2 (classification error) than the latter.

Continuous state variables are discretized for ML estimation purposes. Table 11 shows
the estimation settings, assumed values for the discount factor ρ and the maximum sugarcane
field age ā. We also report the discretized values for the continuous state variables. With
the exception of the distance to sugarcane fields, all classifications are based in equally sparse
quantiles, so bins for each discrete category have the same number of observations.

C Carbon emissions from deforestation

We compute the decrease in carbon stocks from cleared forest land using the guidelines set
in IPCC (2006). The suggested formula for the initial change in carbon stocks converted to
another land is

∆C = −
∑
f

Bf · (1 +Rf ) ·∆Af · CFf , (14)

where Bf stands for the above-ground biomass stock (tonnes d.m./ha) of type f natural cover,
Rf is the ratio between above and below ground biomass (tonne root/tonne shoot), ∆Af is
the change in land cover and CFf is the carbon fraction of dry matter.
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Table 12: Parameters for carbon stock assessment

f Bf Rf CFf
Tropical rain forests 300 0.37 0.47

Tropical moist deciduous forest 220 0.24 0.47

Note: Values of above-ground biomass stock Bf (tonnes d.m./ha), ratio of above-below ground biomass Rf

and carbon fraction of dry matter CFf used in the assessment of carbon emissions from deforestation.

Table 12 provides the values used in equation (14) to assess the effects of deforestation in
carbon emissions.
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