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Contagion in a Core Periphery Financial Network with
Heterogenous Banks

Fernanda Fernandes§

October, 2015

Abstract

The goal of this paper is to analyze the propagation of idiosyncratic shocks through
a financial network, identifying the relation between heterogeneity of institutions and the
resilience of the system. I distinguish banks according to their size and degree of centrality
in order to form a core-periphery network, similar to those empirically observed. Regarding
the effects of unexpected shocks, I argue that connections work as a way of propagation of
losses and prove the possibility of contagion in equilibrium. Unlike the intuitive perception,
I point out that a gap between the size of central and peripheral agents is required for the
first to achieve the expected systemic relevance. When it occurs, the presence of core-banks
is crucial for easing the propagation of direct losses, as well as for protecting the system
against peripheral shocks. I conclude by showing that there is a positive relation between
the resilience of the core-periphery network and the degree of heterogeneity in the size of
these agents.
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1 - Introduction

The widespread financial system losses during the recent crisis have highlighted the need for
a solid knowledge about risks of financial interconnections. The formation of a network, through
interbank transactions, exposes financial institutions to one another even in the absence of
directed link between them. Thus, idiosyncratic shocks are not restricted to directly affected
banks or to their counterparts. In contrast, losses might spread throughout the financial network,
so that individual shocks or in a small group of institutions potentially become a systemic event.

This paper analyzes how some features of financial networks affect the propagation of shocks
through the system. More specifically, I develop a model that accounts for heterogeneity in size
and centrality of banks and that relates the severity of contagion to these variables. The model
is akin to Diamond and Dybvig (1983), in the sense of liquidity preferences shocks and provision
of insurance by financial intermediaries. In line with Allen and Gale (2000), banks are divided
in two regions, according to the received shock in the proportion of impatient depositors. While
institutions of the same region suffer identical shocks, banks of different regions receive shocks
that are negatively correlated. There is also an interbank market that enables the risk sharing
between institutions and, as a consequence, the connection of the system.

The economy consists of ex ante homogenous regions that are formed by heterogenous banks.
According to the centrality degree, institutions are classified as core or peripheral banks. While
peripheral agents are only able to access the core bank of their region, the last might access all
institutions, except the peripherals of the other region. This type of heterogeneity is suggested
by empirical evidences in interbank markets and, for this reason, this pattern is adopted in the
present work. For example, in Craig and Von Peter (2014), the authors argue that the German
interbank market is centred in a small group of banks and that they are crucial to intermediate
a large number of peripheral institutions. Evidences in this line are found in several countries1.

Regarding interbank exposures, I assume that institutions hold the minimal deposits2 needed
to achieve the first-best3, as in Allen and Gale (2000). To analyze financial fragility, the model is
perturbed with the introduction of a state, in which an excess of aggregate demand for liquidity
is verified.

Given the existence of instability, it is necessary to understand how direct contagion is
related to centrality of the affected bank. The question is: are shocks in core banks more prone
to infect direct counterparts? It would be intuitive that these institutions are more relevant to
contagion, after all they have several interconnections. However, I prove exactly the opposite.

1For Germany, United Kingdom, Italy, Belgium and Netherlands, see Upper and Warms (2004), Wells (2004),
Mistrulli (2011), Degryse and Nguyen (2007) and Van Lelyveld e In’t Veld (2012), respectively. Evidences can
also be found for Latin American countries. For Brazil and Colombia, see Tabak et al (2012) and Berndsen and
Léon (2013).

2The concern is not to analyze the network formation, but the shock propagation and systemic risk in a
exogenous network.

3I assume the absence of private markets, where consumers might trade in a unobservable manner. As initially
pointed out by Jacklin (1987), the existence of private market might restrict the risk-sharing between agents and
the achievement of first-best.
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Diversification allows the losses to be better distributed across counterparts and, consequently,
less harmful to each one. Thereby, considering homogenous banks in size, shocks in central
agents are secondary in terms of direct contagion. In fact, it is interesting to show that a higher
centrality is not sufficient to give them the intuitively expected systemic relevance. In the case of
heterogeneity, the relation between centrality and the chance of direct contagion depends on the
size of banks. When core banks are sufficiently large, they become the most relevant institutions
for shocks’ propagation.

The possibility of systemic contagion due to a shock in a core bank is also analyzed. I show
that there is a threshold for the shock’s size from which the domino effect is triggered and the
entire network is affected. It would be interesting to verify if the same shock has such importance
when it hits a peripheral agent. When core banks are sufficiently large, a peripheral shock is
fairly restricted. The direct losses affect the central agent, but the spread is prevented. This
result linked to several evidences of core banks’ sizes4 confirms the expected systemic importance
of these institutions. It is worth noting that this result is produced by the interaction between
their size and position in the network. While the first is responsible for increasing their ability
to retain losses, the second consists in an obstacle to be overcome by the peripheral shock in
order to hit the entire system. Thus, core banks tend to be the most systemically important
banks in actual financial networks, for both the relative easy propagation of direct shocks and
the protection of the system against peripheral ones.

This conclusion provides some implications for rescue policies. In highly heterogenous net-
works, rescue only makes sense5 if the shock hits core banks directly. Therefore, it should be
disregarded in case of peripheral shocks. Asymptotic properties are also analyzed and it can be
shown that core-periphery networks never suffer contagion in this case.

It is worth noting that I consider shocks in the proportion of impatient depositors. Hence,
the liquidity shortage depends on the affected bank’s size. To check how my results are affected
by this assumption, robustness tests are performed. When I consider shocks of fixed size, some
thresholds are modified, however the main results remain unchanged, as shown in section 8.

This work is most related to Allen and Gale (2000). The liquidity shocks are assumed to be
similar to those observed in the seminal paper, as well as the contagion mechanism, in which all
depositors receive the same value per unit of deposit in case of default6. The main difference is
the introduction of heterogeneity in financial institutions’ centrality and size. As Freixas et al
(2000), I assume the existence of banks that are more central in the network than others. In
contrast, I take into account the presence of multiple cores in the network and the connection
amongst them. In line with Iori et al (2006), I introduce heterogeneity in banks’ size and allow
for difference between banks’ exposure, as well as in their liquidity buffers. My results differ
from these papers, since centrality and size work together as natural barriers to contagion.

4For example, in Craig and Von Peter (2014), the authors estimate the optimal core of German financial
system and they argue that the institutions in this group are, in average, 51 times larger than banks in the
periphery.

5I consider that the only objective of rescue policies is to avoid the contagion of the network.
6I do not consider lines and contingents payments (sequential-service constraint), as in Green and Lin (2003)

and Peck and Shell (2003).
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The paper is organized as follows. Section 2 presents the environment, while the optimal
allocation is characterized in the following section. Contagion mechanism and consequences of
heterogeneity are presented in section 4 and 5. Section 6 and 7 analyse contagion in equilib-
rium and the resilience of different networks, respectively. Robustness test and conclusion are
presented in section 8 and 9.

2 - Environment

There are three dates: t = 0, 1, 2. The economy is composed by two ex ante identical regions,
each one formed by n+1 banks. Bank i has a continuum of depositors (consumers) with measure
di.

A consumer has endowment only at date 0 and it is equal to one unit of the single consump-
tion good. I consider ex ante identical individuals who face the risk of being patient or impatient.
An impatient consumer values consumption at date 1, while patient agents value consumption
at date 2. As in Diamond and Dybvig (1983), individual’s type is a private information, known
in the second period. The probability of being impatient depends on the state of nature and the
individual’s region. More specifically, preferences are given by:

U(c1, c2) =

{
u(c1), with probability w(j, S);
u(c2), with probability 1− w(j, S).

where ct is the consumption at date t = 1, 2; j ∈ {A,B} represents the individual’s region and
S, the state of nature. The utility function is assumed to be twice continuously differentiable,
increasing, and strictly concave.

There are two equally likely states of nature, S1 and S2. The probability w might assume
two values: wL or wH , where 0 < wL < wH < 1. Table 1 shows how the probability of being an
earlier consumer is related to individual’s region and the state of nature.

State S\Region A B
S1 wH wL
S2 wL wH

Table 1 - Regional Liquidity Shocks

Turning to banks, I assume they do not have endowments and raise funds with consumers,
through interbank deposits at t = 0. With resources in hand, banks might invest in two types
of assets: liquid and illiquid. The last may be seen as a long-run asset that has a return R > 1
in the end of two periods. Although, it can be liquidated after one period, providing a return
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0 < r < 1. On the other hand, the liquid asset takes only one period to achieve its maturity.
Finally, I assume that only financial institutions have access to the long-run asset and, thereby,
they have advantages over consumers in making investments.

Since depositors of different regions have negatively correlated liquidity shocks, there is
always a region whose financial institutions have a liquidity demand excess and another with
shortage. To eliminate this discrepancy, the interbank market is introduced. I assume, however,
that banks cannot hold deposits in any financial institution. There are two groups of banks:
peripheral and core-banks. More specifically, each region has one institution of the first type
and n of the second. The difference between them is the access to the other institutions of
the system. While a peripheral agent can only hold deposits in the core-bank of its region, the
last institution might be counterpart of all peripheral banks of the same region and also the
core-bank of the other region. Thus, core-banks possibly act as an intermediary in the interbank
market.

3 - Optimal Risk Sharing and Interbank Deposits

In this section, I characterize the optimal allocation and the minimal interbank exposures
which are capable for implementing the first-best. In this regard, I assume the existence of a
central planner who makes the investment and consumption choices in order to maximize the
unweighted sum of consumer’s expected utility. Since individuals are ex ante identical, they are
treated symmetrically. Thus, each impatient consumer receives c1, while a patient individual
receives c2

7.

In the first period, the central planner chooses the amount allocated in the liquid and illiquid
asset for each bank. For bank i, these variables are defined as yi and xi, respectively. Defining
γ ≡ wH+wL

2
, the central planner problem is8:

max
xi,yi

di[γu(c1) + (1− γ)u(c2)]

s.a

xi + yi < di

diγc1 ≤ yi

di(1− γ)c2 ≤ Rxi

7The optimal consumption allocation is independent of the state of nature, once there is no aggregate uncer-
tainty.

8Clearly, the optimal way to provide consumption at date t is allocating the resources in the asset with
maturity at the same date t. For this reason, I consider the feasibility constraints at date 1 and 2, as showed in
the problem.
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The restrictions above are the feasibility constraints at each date of the model. Solving the
problem, the optimal allocation satisfies the first-order condition u′(c1) = Ru′(c2). In turn, the
optimal portfolio are given by:

yi = diγc1 e xi =
di(1− γ)c2

R

As proven in Allen and Gale (2000), the central planner can provide the first-best allocation,
even if he cannot observe the consumer’s type9. In order to do so, it is necessary to transfer
resources between regions, since there is always one with a liquidity excess and another with
shortage10. The first-best allocation might also be achieved in a decentralized market, through
interbank deposits11. Note that interbank deposits work as insurance against liquidity shocks,
thus allowing banks to attend their liquidity demand in every state. However, only core-banks
have access to the neighboring region and, thus, such insurances might occur through them.

Considering c1 and c2 as the amount paid per unit of deposit at date 1 and 2 respectively, it is
possible to show that there are several interbank deposits compatible with first-best allocation12.
Since the contagion problem is intensified with larger cross holdings of deposits13, I assume
the minimal amount able to implement the first best-allocation. To formally characterize this
structure, define Bj as the set of banks of region j, where j ∈ {A,B} and Bj

0 represents the
core-bank of this region. Define zik as the total deposits held in bank k by bank i. Hence, taking
i ∈ Bj \ {Bj

0}, the minimal deposits are given by:

zik =

 (wH − γ)di, se k = Bj
0;

0, c.c.
(1)

On the other hand, core-banks must deposit the amount received from its peripheral coun-
terparts and the value of its possible liquidity shortage in the other core-agent. Defining −j as
the neighbouring region of j, it follows that:

9The optimal allocation automatically satisfies the incentive constraints, since u′(c1) ≥ u′(c2) implies c1 ≤ c2.
10To understand this point, define Bj as the set of banks of region j ∈ {A,B}. In the second period, when

S = S1 for example, region A has a liquidity demand excess of (wH −γ)c1
∑
i∈BA di, while region B has a supply

excess of (γ − wL)c1
∑
i∈BB di. As the regions are identical regarding total wealth, the amount needed by one

is exactly the surplus of the other and the central planner might achieve the first-best through transferences
between regions.

11If interbank deposits are not allowed, the financial institutions are not able to provide the first-best allocation,
since the feasibility constraint would not be satisfied in the second period for the banks of one region.

12The interbank deposits are compatible with first-best allocation when they pay c1 and c2 for impatient and
patient consumers, respectively, and satisfy the constraints of central planner’s problem for every bank and state
of nature. Note that any structure of interbank deposits that fill the liquidity scarcity of the banks in need,
without letting the others in lacking of resources, provide the first-best allocation.

13See Allen and Gale (2000).
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zBj0k
=



0, ∀k ∈ B−j \ {B−j0 } ou k = Bj
0;

(wH − γ)
∑
i∈Bj

di, p/ k = B−j0 ;

(wH − γ)dk, c.c.

(2)

Assuming that core-banks choose to first withdraw from banks with liquidity excess when
it is weakly optimal to do so, the optimal allocation is achieved through deposits defined in (1)
and (2). Notice that the cross-holdings of deposits create a financial network, where banks are
exposed to one another even if there is no direct link between them. The network created in
this environment is called a core-periphery network and its representation follows in the figure
below.

... ...

BA
0

BA
1 BA

2 BA
n

Region A Region B

BB
0

BB
1 BB

2 BB
n

(wH − γ)d
BA1

(wH − γ)d
BAn

(wH − γ)
∑

i∈BB
di (wH − γ)

∑
i∈BA

di

(wH − γ)d
BB1

(wH − γ)d
BBn

Figure 1: Core-Periphery Network - Minimal Exposures Compatible with Optimal Allocation.
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4 - Fragility

Since the financial system is highly interconnected, its fragility is a major point of concern.
In this environment, the network is stable14 and interbank connections work as an efficient way to
reallocate resources among regions. In contrast, if the aggregate demand for liquidity is greater
than the supply, it is possible to verify financial instability and the links possibly work as a way
of propagation of losses.

To study financial fragility, I perturb the model allowing the existence of a zero probability
state, in which there is a liquidity demand excess. In this state, denominated S3, every bank has
a proportion γ of impatient depositors, except bank k. This institution suffers an additive shock
of ε > 0, i.e, wk = γ + ε. Once the probability assigned to that state in the first period is zero,
the optimal portfolio and banks’ cross holdings do not change when compared with the previous
setting. In the next periods, however, the continuation equilibrium does not necessarily remain
the same. When S3 occurs, the optimal choices at date 1 and 2 are affected. In the rest of the
paper, I analyse the continuation equilibrium when the state S3 occurs, assuming the optimal
allocation characterized in section III and the interbank deposits given by (1) and (2).

4.1 - Definition of Continuation Equilibrium

The continuation equilibrium is a subgame perfect Nash equilibrium, regarding dates 1 and
2, of banks’ decisions about assets liquidation and withdrawals of interbank deposits; and con-
sumers’ decision about which period to withdraw their deposits; such that the contracts are
enforced and consumers’ utility maximized.

4.2 - Consumers

Consumers must decide whether to withdraw at date 1 or date 2. For impatient consumers,
it is always optimum to withdraw at date 1, while patient individuals’ choice depends on the
amount received in each period. If the amount paid per unit of deposit at date 2 is lower than
the value paid in the previous date, they prefer to withdraw early and invest these resources in
the liquid asset. I assume that patient consumers always withdraw at date 2 if they consider
that it is weakly preferable to do so. This assumption is adopted to avoid the existence of bank
crisis, when banks are not actually insolvent.

4.3 - Banks: The Liquidation Pecking-Order and Bankruptcy

Banks must choose which assets liquidate for attending the liquidity demand of depositors
at date 1. This decision basically involves the liquidation cost of each asset, that is, the cost

14In other words, there is no possibility of banks bankruptcy and contagion, consequently.
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of obtaining consumption at date 1 in terms of consumption at date 2. Note that the three
investment technologies have different liquidation costs and the relation between them defines
the liquidation pecking-order.

Clearly, the cost of obtaining current consumption by liquidating the liquid asset is the
lowest one15. Thus, banks first choose to liquidate this asset and, then, if it is necessary, they
analyse the liquidation cost of the others. Considering usual utility functions16 and assuming
−ctu′′(ct)/u′(ct) ≥ 1, the interbank deposit is the next asset to be liquidated17. Under these
assumptions, the liquidation pecking-order is:

1 <
c2
c1
<
R

r

In words, it means that banks optimally choose to first liquidate the liquid asset, then the
interbank deposits and, in the last case, the illiquid asset. If financial institutions can attend
the liquidity demand of depositors without withdrawing all their assets, they only liquidate the
remaining amount at date 2. Otherwise, they go bankrupt and all depositors are treated equally.

4.4 - Contagion Mechanism

When an institution receives a shock, it possibly goes bankrupt and the losses may spread
through the network. Since there is no region with liquidity excess in the state S3, each bank
totally uses their resources in the liquid asset in order to attend its depositors at date 1. However,
these resources are not enough to attend the affected bank’s shortage and this agent needs to
withdraw at least some of its interbank deposits. The interaction between banks’ optimal choices
results in a process of mutual withdrawals, leading to a complete liquidation of interbank deposits
in the system. At the end of this process, the liquidity shortage of bank k is not satisfied and
its long-run asset must be liquidated.

Nonetheless, there is a maximum amount of consumption that can be obtained by liquidating
the long-run asset without causing a bank-run. Banks must pay at least c1 to patient consumers
at date 2, otherwise they withdraw early and the institution suffers a run. Thus, the liquidity
buffer of bank k is:

bk(w) = r

[
xk −

dk(1− w)c1
R

]

15The liquidation cost of the short-run asset is one and it is lower than the others, since I am working with the
optimal contracts given by first-order condition and the hypothesis of utility function’s concavity.

16For example, the logarithmic function or the constant relative risk aversion utility function
(
u(ct) =

c1−σt

1−σ

)
17For low levels of relative risk aversion, banks prefer to liquidate the illiquid asset before the interbank deposits.
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Since its excess of liquidity demand is εdkc1, the contracted amount per unit of deposit is
paid at date 1 if and only if εdkc1 ≤ bk(γ + ε). In this case, only late consumers are affected,
receiving less than c2 at date 2. Nevertheless, the amount paid is greater than c1 and, therefore,
there is no bank-run. On the other hand, if:

εdkc1 > bk(γ + ε), (3)

patient individuals anticipate their withdrawals and the institution has to liquidate all its assets
at date 1. Therefore, the payment per unit of deposit held in bank k is such that equates the
value of its assets and liabilities.

qk =
yk + rxk +

∑
i∈Bj∪B−j zkiqi

dk +
∑

i∈Bj∪B−j
zik

(4)

As qk ≤ c1, the shock must result in loss for the direct counterparts of bank k. Thus, its
counterparts might be affected even if they were not directly hit by the shock. Defining LGDkl

as the loss-given-default induced by bank k to bank l, the last one goes bankrupt by contagion
if the loss absorbed is greater than its liquidity buffer. That is,

LGDkl = zlk(c1 − qk) > bl(γ) (5)

Finally, contagion is not restricted to banks directly exposed to the affected bank. Shocks
might spread and affect institutions that are far from bank k in the network. However, that only
happens if there is a path between them18. When a path between bank k and the other banks
exists, the entire system might collapse as a result of an idiosyncratic shock.

5 - Heterogeneity and Contagion

In this section, I am willing to answer the following question: How do banks’ characteristics
affect the chance of contagion? Since financial institutions might differ according to their size
(measure of depositors) and their position in the network, each feature is separately analysed.

18A link between banks i and j is represented by λij and means that i ∈ Cj . A path between k e j is a sequence
of links λ12, λ23, ..., λ(M−1)M such that m ∈ Cm+1 ∀m ∈ {1, ...,M − 1}, with 1 = k and M = j.
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Focusing on size, it is possible to note that both banks’ exposure and liquidity buffer depend on
it. In the case of a peripheral bank, these variables are linear functions of bank’s size. Hence, if
bank k ∈ Bj \{Bj

0} fails by contagion, a peripheral institution i, with di 6= dk, defaults as well19.
In contrast, it is not valid for core-banks. Once S3 is a zero-probability state, its liquidity buffer
depends only on its size, while its exposure is directly related to the total regions’ size. Then, a
higher measure of depositors implies in a higher resilience in that case.

Lemma 1. The resilience of peripheral banks does not depend on their size, while core-banks
are more resilient when they get bigger.

Another point of interest is the relation between bank’s size and its resilience to an exogenous
shock. Since I am considering additive shocks in the proportion of impatient consumers, the
total liquidity necessity is proportional to the affected bank’s size, as well as its liquidity buffer.
Thus, banks’ size does not work as a protection against exogenous shocks. In other words, if
ε > ε is able to cause a bank-run against an specific institution, then any bank goes bankrupt
when directly hit by it. The threshold definition follows (6), as derived in the appendix. The
assumption of additive shocks implies that the excess of liquidity demand varies according to the
affected bank’s size. This assumption is used throughout the paper, however I show in section
8 that the main results are maintained when shocks of fixed sizes are considered.

ε ≡ r

R− r
(1− γ)

[
c2
c1
− 1

]
(6)

Financial institutions are also heterogeneous in their position in the network. According to
this feature, there are two types of agents: core-banks and peripheral ones. As suggested by
the nomenclature, financial institutions might have distinct levels of centrality. Analysing the
degree centrality, defined as the ratio of the number of counterparts to the total possible, it
is clear that core-banks are more central than peripheral institutions. The difference between
banks’ centrality is even higher when the measure of Betweenness Centrality is analysed. I.e,
when it is considered how well situated an institution is in terms of its presence on the shortest
paths between banks20. Thereby, core-banks are more central due both to its higher number of
counterparts and its intermediation role.

Note that each feature mentioned above has its own effects on easing/blocking contagion.
To see the degree centrality effect, suppose that bank k is hit by a shock ε > ε. Clearly, it
needs to liquidate an excessive amount of long-run assets in order to honor its agreements at
date 1. Suppose further that k is peripheral, i.e, k ∈ Bj \ {Bj

0} where j ∈ {A,B}. Using (5),
the interbank deposits (1) and (2), the optimal contracts and assuming that only bank k goes
bankrupt, the loss-given-default absorbed by the core-bank is:

19Clearly, institution i goes bankrupt if its counterpart defaults initially.
20Note that the network shown in figure 1 has only one shortest path between banks of different regions and

core-banks are always present on it. In contrast, peripheral banks never lie on the shortest path.
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LGDkBj0
=
zBj0k

(1− γ)c1

1 + wH − γ

[
1− c2

c1

r

R

]

On the other hand, if bank k is a central agent, the loss-given-default absorbed by a peripheral
bank assumes the following expression.

LGDBj0i
=

ziBj0
(1− γ)c1dBj0

dBj0
+ (wH − γ)

∑
i∈B−j∪Bj\{Bj0}

di

[
1− c2

c1

r

R

]

Lemma 2. The loss-given-default induced by a peripheral bank to a core-bank is higher than
the loss-given-default induced in the opposite case.

I prove that a peripheral bank induces higher losses to its creditor than a core-bank to its
peripheral counterparts when they are directly hit by the shock ε > ε. The proof follows in the
appendix and does not depend on institutions’ size21. The lemma is essentially driven by the
higher number of core-bank’s counterparts. Since peripheral banks have only one creditor, the
losses are totally absorbed by it. In contrast, if a central agent goes bankrupt, its losses might
be shared with several counterparts and, thus, are less harmful to each one.

In turn, the betweenness centrality effect goes in the opposite way in terms of easing/blocking
contagion. Notice that the institution less exposed to a core-bank is counterpart of its coun-
terpart. Therefore, the loss induced by the liquidation of a central agent directly hits n + 1
banks and possibly the other n institutions through its counterparts. However, when a shock
hits a peripheral agent, a larger path must be taken to affect the entire system and core-banks
might block the spread in certain cases. Thereby, even though the loss-given-default induced by
a core-bank is lower, it hits other banks more easily and, if sufficiently large, might affect the
entire network.

Then, the two intrinsic features of centrality act in different directions on the chance of
contagion occurrence. It is worth noting that the net effect of these forces does not always have
the same sign. In other words, it is not necessarily true that a shock is more harmful when it hits
a core-bank. There are circunstances in which its importance is even higher in the peripheral
case. In order to understand this point, remember that, when a shock ε > ε affects a core-bank,
the contagion of its counterparts occurs if (5) is respected. Note that both sides of the inequality
depend on the return of long-run asset when prematurely liquidated (r). More specifically, the

21Note that both the liquidation value and the liability (at date 1) of a peripheral bank are proportional to
its size. Thus, the amount paid by this agent per unit of deposit does not depend on its measure of depositors.
Furthermore, the interbank exposure of a core-bank to its peripheral counterpart is proportional to the size of
the later one, instead of its own size. Then, the ratio of banks’ exposure does not depend on their size as well.
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chance of contagion is negatively related to this parameter22. It would be interesting, then, to
define the highest value of r that would be able to cause the failure of a peripheral bank when
the shock hits a central agent. The definition of the threshold is given by:

rN =
R(wH − γ)(

c2
c1
− 1
)(

1 + wH − γ + (wH − γ)
∑

i∈Bj∪B−j\{Bj0∪B
−j
0 }

di
d
B
j
0

)
+ (wH − γ) c2

c1

(7)

When the affected bank is peripheral, the threshold assumes the following expression:

rP =
R(wH − γ)

d
B
j
0

dk

(
c2
c1
− 1
)

(1 + wH − γ) + (wH − γ) c2
c1

(8)

It should be noted that both thresholds are functions of the ratio of bank’s size (dk/dBj0
).

The first is a decreasing and convex function, while the second one is increasing and concave.
The functions follow in figure 3.

r

dk
d
B
j
0

1dk
d
B
j
0

∗

rN(1)

rP (1)

rP

rN

DC Effect BC Effect

Figura 2: The threshold of r as a function of banks’ size.

As it can be seen, there is a point dk/dBj0
∗ after which a threshold is overcome by the other.

Note that after this point the peripheral banks’ threshold is larger than the one verified for core-
banks. Surprisingly, in that case, a shock in a peripheral agent affects more easily the core-bank

22The return r affects positively the loss-given-default. Furthermore, it has a effect of lowering banks’ liquidity
buffer.
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than the other way around. More specifically, if dk/dBj0
∈ (dk/dBj0

∗,∞), the degree centrality

effect prevails. In turn, the net effect is the opposite in the complementary interval. In addition,
I prove that the ratio which equals the thresholds is lower than one. Since empirical evidences
suggest that central agents are considerably bigger than the peripheral ones23, it is reasonable to
believe that the betweenness centrality effect prevails in the networks similar to those observed
in the data. In a different manner, shocks in core-banks tend to be more relevant in terms of
direct contagion in that case.

6 - Contagion in Equilibrium

Since shocks might spread throughout the network, another point of concern is the possibility
of a systemic failure in equilibrium. More precisely, it should be analysed under which conditions
the fixed point of the contagion problem is the set composed of all banks of the system24. I also
analyse if such conditions are more restrictive according to the characteristics of the affected
bank.

Proposition 1. Consider the market structure described in figure 1 and perturb the model
by the addition of a zero-probability state S3. Assume that bank i ∈ Nj chooses an investment
portfolio (xi, yi, zi), where (xi, yi) is the first-best portfolio and zi = (ziIj , ziI−j , zi1, zi2, ..., zi2n) is
formed by (1) and (2). Suppose that a core-bank k is hit by a shock ε > ε. Then, if at least one
institution of its region goes bankrupt by contagion, the entire system collapses.

Proof: Step 1: I initially argue that the affected bank induces non-zero losses to its creditors.
Once S3 has taken place, the interbank deposits are not enough to attend the core-bank’s lack
of liquidity. Therefore, the liquidation of its long-run asset is necessary. However, ε > ε and k
suffers a bank-run. As a consequence, its assets must be completely liquidated at date 1. Since
the feasibility constraint is not respected when qk = c1, the core-bank pays qk < c1 per unit of
deposit.

(γ + ε)dkc1 + (1− γ − ε)dkc1 > γdkc1 + bk(γ + ε) + r
(1− γ − ε)dkc1

R
= yk + rxk

Step 2: Having established that the affected bank induces non-zero losses to its creditors,
I next show that its direct counterparts fail by contagion. First, suppose that at least one
institution of its region goes bankrupt. By lemma 1, it is clear that all the other peripheral
agents fail as well, no matter their size.

23For example, Craig and Von Peter(2014) argues that in the German interbank market the average of core-
banks’ total assets is 51 times higher than the verified for peripheral banks.

24The algorithm used and the unicity/convergence of the solution follows in the appendix.
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Furthermore, I show in the appendix that there is a threshold of payment (qk) after which
the counterparts do not suffer contagion. However, the thresholds assume different expressions
according to the centrality of the creditor. Analysing them, it is possible to show that the
peripheral counterparts’ threshold is lower than the one verified in the case of a central creditor.
It means that the central counterpart of a core-bank suffers contagion more easily than the
others. Intuitively, this results is driven by the higher exposure of core-banks to each other,
which is inherent to their intermediation role. Since I show that all peripheral counterparts go
bankrupt, then the core-bank of the other region also fails.

Step 3: Finally, it must be proved that the other peripheral banks suffer contagion as well.
Note that banks go bankrupt if and only if they cannot honor their agreements when the loss-
given-default, induced by their counterpart, is compatible with the amount c1 hypothetically
paid by them. Once the direct peripheral counterparts initially fail, the result follows. �

Proposition 1 states that under certain conditions a shock in a core-bank might lead to a
systemic contagion in equilibrium. Financial contagion as an equilibrium phenomenon was first
modeled in Allen and Gale (2000), when they considered a circular network structure composed
of homogenous banks25. Note, however, that I prove a more general result, since the existence
of heterogeneity in banks’ size and centrality is allowed in this paper. Even more important,
though, I show the possibility of a systemic contagion in a network similar to those observed in
the data.

Moreover, the proposition highlights the systemic relevance of a shock ε > ε when it affects
a core-bank. In addition, it would be interesting to verify if the same holds when the shock hits
an agent with different centrality in the network. Proposition 2 affirms that, when the same
shock affects a peripheral institution and the core-bank is sufficiently large, its systemic effects
are substantially restricted. In contrast, if the core-bank is relatively small, the entire system
fails by contagion.

Proposition 2. Consider the market structure described in figure 1 and perturb the model
by the addition of a zero-probability state S3. Assume that bank i ∈ Nj chooses an investment
portfolio (xi, yi, zi), where (xi, yi) is the first-best portfolio and zi = (ziIj , ziI−j , zi1, zi2, ..., zi2n)
is formed by (1) and (2). Assume the same parameters used in proposition 1 and suppose that
a peripheral bank k ∈ Bj \ {Bj

0} is hit by a shock ε > ε. Then, there is a threshold dM
Bj0

such

that if dBj0
≥ dM

Bj0
, the core-bank totally absorbs the losses induced by k and protect the system

against contagion.

dM
Bj0
≡ dk

(wH − γ)c1
(1 + wH − γ)(c2 − c1)

[
R

r
− c2
c1

]
≡ dkA (9)

25In the incomplete network structure studied by Allen and Gale (2000), bank i is only exposed to bank i+ 1,
whose liquidity shocks are negatively correlated to its shocks.
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Proof: Step 1: Since ε > ε, bank k goes bankrupt. Initially, it should be shown that dM
Bj0

is

in fact a threshold. Note that the central agent fails by contagion if and only if it is not able to
honor its agreements when only bank k do not pay c1 per unit of deposit. Thus, using (5), the
threshold is determined. Since only the right hand side of (5) depends on core-bank’s size and
this relation is strictly increasing, (9) defines in fact a threshold26.

Step 2: In this step, I show that the entire system collapses when dBj0
< dM

Bj0
. First, the

contagion of core-banks’ counterparts is analysed. Once k goes bankrupt, it does not pay c1
per unit of deposit. Consequently, the loss-given-default induced by the central agent to its
counterparts is greater than in the case when it is directly hit by the shock, as in proposition 1.
Then, the contagion of core-bank’s creditors follows. Finally, I argue that all peripheral banks of
the other region default as well. Since the regions have the same size, this point is clearly true,
whereas the peripheral banks of the affected region become insolvent when only bank k and the
respective core-bank do not honor its agreements. �

Thereby, the shock might be systemically more relevant according to the affected bank’s
centrality. It is worth noting that core-banks are crucial both for spreading losses in case of
direct default and for protecting the system against peripheral shocks. In proposition 2, when
a peripheral bank is hit, these agents may act as a barrier, preventing the propagation of losses
throughout the system. The protective role of core-banks is due to both their position in the
network and their size. The former is significant, since peripheral shocks might cause the failure
of a core-bank to hit the rest of the system. In turn, the role of size is related to core-banks’
capacity to absorb losses. Intuitively, their position might be understood as a natural barrier
to be overcome, while their size should be seen as the strength of this barrier. Thus, when
sufficiently large, core-banks might be crucial to avoid the spread of peripheral shocks.

Another key point for contagion occurrence is the size of the affected bank. Turning back to
(9), it can be seen that A is greater than zero and, therefore, the threshold is directly related to
the affected bank’s size. Thus, if a core-bank is able to avoid the propagation of losses caused
by the failure of the largest peripheral institution, the system never collapses when a shock
hits the periphery. In addition, I show that A is greater than one. Consequently, core-banks
should be the largest institutions in the network for protecting the system against any peripheral
shock. Combining proposition 1 and 2, it can be concluded that, when core banks are sufficiently
large, the same shock is able to cause a systemic collapse, as well as only the bankruptcy of the
affected bank. In addition to highlighting the systemic relevance of core-banks, this conclusion
has implications for rescue policies. Note that, in this case, rescue policies only make sense if
the shock hits a core-bank27.

Corollary 1. Assume that dBj0
≥ (maxi∈Bj\{Bj0}

di)A. Then, the system only collapses when

a shock hits a central agent in the network.

26One may argue that the absorbed loss implicit in (9) is not the actual one when the core-bank’s size is lower
than dM

Bj0
. In fact, it is the lower-bound on the actual loss. Then, the central agent must suffer contagion in that

case.
27I am considering that the only goal of rescue policies is to avoid contagion.
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7 - Resilience

As shown before, a financial system might suffer contagion. Intuitively, the resilience of a
financial network should be related to its characteristics, for example: its structure, number of
banks and the heterogeneity between banks’ size. Aiming to compare the resilience of some
networks, I analyse in this section how networks’ features affect contagion occurrence.

Throughout this paper, it can be noted that banks’ size heterogeneity has non-trivial role
for blocking contagion. According to empirical evidences, for example in Craig and Von Peter
(2014)28 and Fricke and Lux (2012)29, the largest banks of the network belong in general to the
system’s core. Then, considering that core-banks are the largest agents in the network, I analyse
how differences in institutions’ size affect the possibility of contagion. In case of a peripheral
shock, contagion is more easily avoided when the size differential increases. However, if the
affected institution is a core-bank, the failure of peripheral agents takes place more frequently
and the opposite is verified for the central counterpart. To understand this point, note that the
payment capacity of a core-bank is an increasing function of banks’ size differential. The value of
its assets decreases proportionally more than its liabilities, due to the lower relative contribution
of the payments done by its counterparts30. The negative effect on its assets’ value is harmful
to all its counterparts. However, in the case of a central counterpart, there is also an opposite
force: the increase in the ratio of liquidity buffer to bank exposure. Considering the different
effects in this case, I show that the positive one prevails31. Therefore, according to the centrality
of the affected bank, an higher heterogeneity might ease or block the direct contagion. Actually,
it blocks contagion in case of a shock in a peripheral institution, while the net effect depends on
the counterpart’s position when a shock hits a core-bank. Assuming, however, that banks are
equally susceptible to exogenous shocks, lemma 3 follows below.

Lema 3. Core-periphery financial networks are more resilient, when the size heterogeneity
between core-banks and peripheral banks increases.

Intuitively, one should also expect the existence of a relation between the total number of
peripheral institutions and the resilience of a core-periphery network. Clearly, when a shock
hits a peripheral agent, the loss-given-default is the same regardless the number of peripheral
institutions in the network. For a core-bank, although, the payment capacity per unit of deposit
in case of default is an increasing function of the number of its counterparts. Therefore, there
is a reduction of the loss induced by core-banks when n increases. In order to evaluate the

28The paper develops a theoretical structure for a core-periphery network and estimates the optimal core, so
that the distance between this structure and the German network is minimized. Having obtained the optimal
core, the authors create a binary variable, for each bank, which assumes the unit value if an institution belongs
to the optimal core and zero, otherwise. Using Maximum likelihood methods, the binary variable is regressed
against total assets, for example. The estimated coefficients are highly significants.

29Following the same line used by Craig and Von Peter (2014), the work studies the Italian interbank system.
30I consider the case in which the counterparts pay c1 per unit of deposit withdrawn at date 1. To better

understand, see the algorithm used in equilibrium determination, presented in the appendix
31I am studying the direct effects of size heterogeneity, instead of accounting the indirect consequences.
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total loss, however, it is necessary to study the exposure of each counterpart. As it can be seen
in (1) and (2), only core-banks’ deposits held in one another depend on n. Hence, when the
periphery gets bigger, there are two effects on direct contagion of the central counterpart. While
the greater payment capacity works as an obstacle, the higher bank exposure works in the other
way. However, it can be shown that the first effect prevails and, consequently, there is a positive
relation between the resilience of a core-periphery network and the number of peripheral banks
in each region.

Lemma 4. Consider identical core-periphery networks, except by the number of peripheral
banks. The more resilient system is the one with higher peripheries, regarding the number of
banks.

Having established the lemma above, a natural question arises. Is contagion a possible
phenomenon regardless the size of n? Determining exactly the threshold would be complicated
due to the several interactions of payments in equilibrium. However, asymptotic proprieties
may be analysed. Initially, it is necessary to understand how a shock ε > ε in a core-bank
affects the system. When n tends to infinity, the losses induced by the core-bank are well
distributed and the payment per unit of deposit tends to the one which was initially promised.
Thus, peripheral banks do not suffer contagion. The central counterpart in turn might fail as a
result of a exposure which tends to explode. Actually, its contagion depends on the parameters.
Studying the worst case, i.e, when both core-banks go bankrupt, the periphery does not fail
by contagion. To conclude the analysis, it is needed to observe the propagation of losses when
the shock hits a peripheral agent. Assuming that core-bank’s size is lower than the threshold
presented in proposition 2, the loss induced by the central agent tends to zero and its peripheral
counterparts do not default on their agreements. Although, I show that if a core-bank suffers
direct contagion, the other central agent fails as well. Nevertheless, its payments per unit of
deposit still tends to the contracted value and peripheral banks do not go bankrupt. The formal
demonstration might be seen in the appendix.

Lema 5. The core-periphery network is not asymptotically susceptible to contagion.

To conclude the analysis of relative resilience, it is worth comparing the stability of a core-
periphery network to the one recurrently used in the literature, known as circular or incomplete
network. So, assume homogeneity of bank’s size and consider that the only difference between
the two systems is their structure. Suppose now that ε > ε hits an institution in the circular
network and its counterpart goes bankrupt. Allen and Gale (2000) shows that the entire system
collapses in that case. Assuming the same parameters, this result is not necessarily found in a
core-periphery network. Note that, in the circular network, all banks have only one creditor.
Therefore, the losses induced by them is similar to the ones caused by the failure of a peripheral
institution in a core-periphery network. The similarity is also verified for the threshold of r,
before which there is direct contagion of the central counterpart. Turning to figure 2, it is
possible to see that, when banks are homogenous in their size, the threshold for a core-bank is
lower than the one for a peripheral bank. Thus, the existence of a direct contagion in the circular
system does not imply the same result in a core-periphery network. Even if the shock hits a
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peripheral agent, contagion might not occur. Considering n sufficiently large, a core-periphery
structure does not suffer contagion.

Reversing the exercise, assume that the core-periphery system collapses as a result of a shock
ε > ε. Then, the contagion of the circular network necessarily occurs when the same shock hits
this system. Since the number of banks’ creditors in the last network is less or equal to the one
observed in the first structure, the induced loss is greater or equal in that case. Finally, note
that the number of banks is unable to avoid the systemic contagion in a circular network, once
the number of creditors is the same regardless the total amount of banks in the network.

Lema 6. Considering a sufficiently large number of banks, the circular network is less resilient
than the core-periphery network.

8 - Robustness

As highlighted in section 5, the existence of banks’ size heterogeneity implies that the aggre-
gate excess of liquidity varies according to the affected bank’s size. In this section, I show that
my results rely weakly on this assumption.

With this purpose in mind, assume that a shock of fixed size hits a financial institution in
the state S3. Three shocks of this type might be considered: loss of short-run assets, destruction
of long-run assets or additional costs. The first one was excluded, since the largest possible
loss would not be able to break a bank. The second in turn is not very useful, once the shock
would possibly be limited to a negligible size. Clearly, the maximum destruction of the long-run
asset that a bank may face is the total value held on it. Then, in order to have homogenous
shocks, they would be limited to the biggest possible loss that the smallest bank in the network
can absorb32. Depending on the variance of banks’ size, the non-trivial interval to contagion
analysis might be not reached. Since shocks of additional costs might be used and their size is
not restricted, I choose to use this class of shocks for testing my results.

Suppose, then, a financial institution, k, has to pay a cost of εF in the state S3. Consider
that this cost is a senior debt paid to an external agent. This shock causes a bank failure if
and only if it is bigger than bank k’s liquidity buffer. Since this variable depends on bank’s
size, the threshold also depends. Thus, in contrast to what happens in the case of heterogenous
shocks, the same additional cost might lead some institution to the failure and not necessarily
the others.

It is crucial to note that, once bank k goes bankrupt, systemic contagion does not depend
on the type of the shock33. Hence, if a proportional shock may cause a systemic collapse, an

32More specifically, the shocks would be limited to be less than min
i∈N

di
(1−γ)c2

R

33To see this point, turn to (5) and note that qK does not depend on the shock, as well as the loss-given-default
induced by k
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additive shock do the same when it is able to cause the initial failure. Assume that a core-bank
is hit by a shock εF , such that:

εF > εF ≡ max
i∈N

εi
F = max

i∈N
di

(1− γ)rc1
R

[
c2
c1
− 1

]
, (10)

then, if at least one institution of its region fails by contagion, the system collapses as well.
Therefore, the main point of proposition 1 remains unchanged, when considering shocks of fixed
size. The same is verified for proposition 2 and corollary 1.

Regarding resilience results, some considerations should be done. Considering lemma 3, note
that, in case of additive shocks, the way in which size heterogeneity increases is relevant for my
results. When peripheral banks’ size reduces, it is not necessarily true that there is a positive
relation between size heterogeneity and network resilience34. In this case, lemma 3 is still valid
if the reduction of peripheral banks’ size is sufficiently large such that the threshold in (9) is
reached. In addition, when considering homogenous shocks, lemma 4 does not necessarily hold.
Actually, it should only account for contagion given a initial failure, instead of network resilience.

To conclude, it is necessary to highlight that lemma 5 and 6 remain unchanged. Thus, the
main results of this paper does not rely on the assumption of proportional shocks. In other
words, the key results are maintained when considering shocks of fixed size.

9 - Conclusion

As highlighted through the paper, a financial network is formed by interbank exposures.
These connections act as a protection against expected shocks, while work as a way of propa-
gation of losses in case of unexpected ones. Since there are empirical evidences that interbank
markets resemble to a core-periphery network, I analyse the contagion issue considering this
specific structure.

Allowing size and centrality heterogeneity, it is possible to see that the direct contagion
is related to the characteristics of the institution initially bankrupt. I show that an higher
centrality may not ease the spread of shocks. At the same time the failure of a core-bank might
directly affect an higher number of counterparts, its capacity of loss mitigation makes this event
less harmful to each counterpart. Additionally, it was shown that banks’ size and centrality
interact together determining the importance of a shock in each institution. I prove that, when
the measure of depositors of a peripheral bank is greater or equal to the one verified in a core-
bank, the direct contagion occurs more easily when a shock hits the less central institution.
The opposite occurs when core-banks are sufficiently large. Since there are empirical evidences

34The reduction of peripheral banks’ size eases the failure caused by an exogenous shocks, since it is reasonable
that small shocks occurs more frequently.
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that the central institutions are significatively bigger than the others, the centrality effect in the
direction of blocking contagion seems to prevail in networks similar to the actual ones.

Extending the analysis, the contagion of indirect counterparts is also studied. I show that,
under certain conditions, a shock in a core-bank might cause a systemic collapse. The con-
tribution of this result is proving the possibility of contagion in equilibrium in a heterogenous
network, regarding bank’s size and centrality. More important, though, I prove the existence of
systemic risk in a financial network similar to those observed in several countries.

In addition, the paper shows that the same shock does not necessarily have such dimension,
when it affects a peripheral institution. If core-banks are sufficiently large, the effects of pe-
ripheral shocks are considerably restricted. Then, my results highlight the systemic importance
of core-banks for both propagating shocks that directly affect them and protecting the system
against peripheral failures. I also show that, when core-banks are sufficiently large, shocks are
only able to cause a systemic contagion when they directly hit those central agents.

The relative resilience of some distinct networks is also analysed. Regarding this subject,
the main result is achieved by comparing the core-periphery network to the circular one. It has
been shown that the former is more resilient than the second one, implying that the systemic
risk could be being overestimated in the literature.

Finally, the literature of financial networks is relatively recent and there are still several
issues to be analysed. This paper studies contagion in a fixed network compatible with the
first-best allocation and it is clear the necessity of a deeper understanding of network formation.
Specially, explaining the forces behind the predominance of core-periphery networks in the in-
terbank market of several countries and studying possible policies to undermine systemic risks
in that case.
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Appendix

1) Proof of Lemma 2

1 + (wH − γ) < 1 + (wH − γ)
dB−j

0

dBj0
+ (wH − γ)

∑
i∈Bj∪B−j\{Bj0,B

−j
0 }

di
dBj0

1 + (wH − γ) < 1 + (wH − γ)
∑

i∈Bj∪B−j\{Bj0}

di
dBj0

1

1 + (wH − γ)
>

dBj0
dBj0

+ (wH − γ)
∑

i∈Bj∪B−j\{Bj0}
di

Since zBj0i
= ziBj0

, then:

LGDiBj0
=

zBj0i

1 + (wH − γ)
>

ziBj0
dBj0

dBj0
+ (wH − γ)

∑
i∈Bj∪B−j\{Bj0}

di
= LDGBj0i

�

2) Threshold of the Shock

Suppose that ε is sufficiently large, such that bank k goes bankrupt. I.e,

εdkc1 > bk(γ + ε) = r

[
xk −

(1− γ − ε)dkc1
R

]
=

r

R
[(1− γ)dkc2 − (1− γ − ε)dkc1]

ε >
r

R− r
(1− γ)

[
c2
c1
− 1

]
≡ ε

εdic1 >
r

R− r
[(1− γ)dic2 − (1− γ)dic1] = bi(γ + ε)
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Therefore, the shock ε > ε is able to cause the failure of any bank of the system.

�

3) Algorithm - Equilibrium Determination

The algorithm used for determining the insolvent banks in equilibrium follows below.

i) Consider that only bank k goes bankrupt as a result of a exogenous shock and compute
the liquidation value of its assets.

ii) Compute the LDGkj ∀j ∈ N and determine D1
k = {j ∈ N ;LDGkj > bj(γ)}. If D1

k = ∅,
only bank k does not honor its agreements and the other banks pay c1 per unit of deposit
withdrawn at date 1.

iii) If D1
k 6= ∅, then assume that only its elements and bank k go bankrupt. Compute the

liquidation value of their assets.

iv) Determine D2
k = {j ∈ N ;

∑
i∈D1

k∪k
LDGij > bj(γ)}. If D2

k = ∅, then D1
k is the set of insolvent

banks in equilibrium.

v) If D2
k 6= ∅, then continue this process until the set of banks is exhausted or any other bank

goes bankrupt.

4) Unicity of the Set of Insolvent Banks in Equilibrium

In the case of ε ≤ ε, the set of insolvent banks in equilibrium is empty and, trivially, unique.
Then, assume that a shock ε > ε hits bank k. Suppose for contradiction the existence of multiple
sets of insolvent banks in equilibrium, denominated D∗k,1, D

∗
k,2, ..., D

∗
k,θ. Note that k belongs to

all these sets. However, since D∗k,1 6= D∗k,2 6= ... 6= D∗k,θ, for each possible pair of sets, there is an
element that belongs to one and not to the other. Consider, for example: D∗k,1 and D∗k,2. Then,
it is possible to say that there is an institution i0 which belongs to one and not to the other.
Without loss of generality, suppose that i0 ∈ D∗k,1 and i0 /∈ D∗k,2. Since i0 ∈ D∗k,1, it is not able
to pay c1 per unit of deposit when the other banks of this set also go bankrupt. I.e:

∑
l∈D∗

k,1\{i0}

LGDl,i0 > bi0(γ)
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However, i0 /∈ D∗k,2. It means that the loss suffered by it, due to the bankruptcy of all
elements of D∗k,2, is not large enough to cause its failure. Therefore, the inequality below is
satisfied.

∑
l∈D∗

k,2

LGDl,i0 < bi0(γ)

Consequently,

∑
l∈D∗

k,1\{i0}

LGDl,i0 >
∑
l∈D∗

k,2

LGDl,i0

Since the inequality above holds, D∗k,1 \ {i0} 6= D∗k,2. Actually, it is possible to say that
D∗k,1 \{i0} 6⊂ D∗k,2, otherwise i0 would also belong to D∗k,2. This affirmative is true, once the total
loss induced to i0 increases or at least remains the same when an additional bank goes bankrupt.
To understand this point, take j ∈ D∗k,2 \D∗k,1 and analyse the loss induced to i0 when j is added
to the set D∗k,1 \ {i0}. Then,

∑
l∈(D∗

k,1\i0)∪{j}

LGDl,i0 =
∑

l∈D∗
k,1\{i0}

zi0l


(1− γ)dlc1

(
1− r

R
c2
c1

)
+
∑
i∈Cl

zli(c1 − qi(q−i))

dl +
∑
i;l∈Cl

zil

+

+zi0j


(1− γ)djc1

(
1− r

R
c2
c1

)
+
∑
i∈Cj

zji(c1 − qi(q−i))

dj +
∑

i;j∈Ci
zij


(11)

There are two possible cases: j is a counterpart of i0 or not. When j is not a counterpart of
i0, the second term of the equation above is zero. Note that the first term never decreases when
an additional bank goes bankrupt. It occurs because the payment done by insolvent institutions
depends positively on the amount received by their deposits. Since I consider that bank j also
defaults (qj < c1), then its counterparts are negatively affected. Perceive that they might not
be counterparts 35of i0 and, if it is not the case, the last ones could be solvent. Then, the first
term of the equation could remain the same or increase when an additional bank goes bankrupt.
However, when j is counterpart of i0, it is necessarily verified an increase of the loss absorbed
by i0, once the second term of the equation is positive.

35If j is not counterpart of a counterpart of i0, it could be counterpart of a counterpart of a counterpart of i0
and could affect it more indirectly. Note that the reasoning used for concluding the non-negative change of the
first term might be extended and be used for distant paths between i0 and j.
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Therefore, D∗k,1 \ {i0} 6⊂ D∗k,2, implying that ∃ i1 ∈ D∗k,1 \ {i0} such that i1 /∈ D∗k,2. Thus,

∑
l∈D∗

k,1\{i0,i1}

LGDl,i1 > bi1(γ) and
∑
l∈D∗

k,2

LGDl,i1 < bi1(γ)

Once again, the inequalities above imply that D∗k,1 \ {i0, i1} 6⊂ D∗k,2. Note that the number
of elements of Dk,1 is lower than the number of banks in the economy and, therefore, finite.
Thus, repeating this process, it will be possible to find in some moment η ∈ Z such that
iη ∈ D∗k,1 \ {i0, i1, ..., iη−1} = {k} and iη /∈ D∗k,2. Then, k /∈ D∗k,2.

�

5) Proof of Proposition 1

Step 1: In the body of the work.

Step 2: Suppose that at least institution k ∈ Bj \ {Bj
0} goes bankrupt by contagion. Then,

bank k fails when considering that only the core-bank does not honor its agreements. That is,

zkBj0
(c1 − qBj0) > bk(γ) (12)

where:

qBj0
=
γdBj0

c1 + r
R

(1− γ)dBj0
c2 + (wH − γ)c1(

∑
i∈Bj\{Bj0}

di +
∑

i∈Bj di)

dBj0
+ (wH − γ)

∑
i∈Bj∪B−j\{Bj0}

di

By lemma 1, ∀i ∈ Bj \ {Bj
0}, the following inequality is valid: LGDBj0i

> bi(γ). Thus,

qBj0
< qDP

Bj0
≡ c1

[
1− r

R

(1− γ)

(wH − γ)

(
c2
c1
− 1

)]

It is needed to be shown that the same is verified in the case of a central counterpart. So, it
is necessary that LGDBj0B

−j
0
> bB−j

0
(γ). In other words, the inequality below must hold.
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qBj0
< qDN

Bj0
≡ c1

1−

 dB−j
0∑

i∈B−j
di

 r

R

(1− γ)

(wH − γ)

(
c2
c1
− 1

)

Note that qDP
Bj0

< qDN
Bj0

. It means that if the payment done by the affected core-bank is

sufficiently small to cause the failure a peripheral bank, then the central counterpart suffers
contagion as well. Since qIj < qDP

Bj0
, then the direct contagion of all counterparts occurs.

Step 3: I still need to prove that peripheral banks of the other region suffers indirect conta-
gion. Thus, ∀i ∈ B−j \ {B−j0 }, it is necessary that :

ziB−j
0

(c1 − qB−j
0

) < bi(γ) (13)

where:

qB−j
0

=
γdB−j

0
c1 + r

R
(1− γ)dB−j

0
c2 + (wH − γ)(

∑
i∈B−j\{B−j

0 }
dic1 +

∑
i∈B−j diq

′
Bj0

)

dB−j
0

+ (wH − γ)
∑

i∈B−j∪Bj\{B−j
0 }

di

Since the regions are identical and the core-bank of region j goes bankrupt, qB−j
0

in (13) is

lower than qBj0
in (12). In addition, ∀i ∈ B−j, there is l ∈ Bj such that dl = dk. Then:

ziB−j
0

(c1 − qB−j
0

) > zlBj0
(c1 − qBj0) > bl(γ) = bi(γ),

Consequently, (13) is not satisfied and all peripheral banks of the neighbor region suffer
contagion.

�

6) Proof of Proposition 2

Step 1: First, it is necessary to prove that there is no direct contagion when dBj0
≥ dM

Bj0
.

Consider initially that only bank k defaults. So, the payment per unit of deposit is given by:
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q̄k =
γc1 + r

R
(1− γ)c2 + (wH − γ)c1

1 + (wH − γ)

Then, it is possible to write the loss-given-default of k as follows below. Since dBj0
≥ dM

Bj0
,

the core-bank does not fail and avoids the propagation of the shock.

LGDkBj0
= dk

(wH − γ)(1− γ)c1
1 + wH − γ

[
1− r

R

c2
c1

]
= dM

Bj0
(1− γ)c1

r

R

[
c2
c1
− 1

]
≤ bBj0

(γ)

Define now the lower bound on the loss-given-default of k as (LGDkBj0
). Note that it occurs

when only bank k goes bankrupt. Then, if dBj0
< dM

Bj0
, the inequality below is satisfied and the

core-bank suffers contagion.

bBj0
(γ) < dM

Bj0
(1− γ)c1

r

R

[
c2
c1
− 1

]
= dk

(wH − γ)(1− γ)c1
1 + wH − γ

[
1− r

R

c2
c1

]
= LGDkBj0

Step 2: Finally, I need to prove that, there is a systemic collapse if dBj0
< dM

Bj0
. Suppose

that only bank k and its direct counterpart do not pay c1 per unit of deposit. Thus, the loss-
given-default of the core-bank to an counterpart ι is given by LGDBj0ι

= zιBj0
(c1 − q′Bj0), where:

q′
Bj0

=
γdBj0

c1 + r
R

(1− γ)dBj0
c2 + (wH − γ)c1(

∑
i∈Bj\{Bj0,k}

di +
∑

i∈Bj di) + (wH − γ)dkqk

dBj0
+ (wH − γ)

∑
i∈Bj∪B−j\{Bj0}

di

Comparing the payment above to the one considered in (12) and noting that qk < c1, it is
possible to conclude that qBj0

> q′
Bj0

. Since the parameters are the same of proposition 1, all

peripheral banks of the same region suffer contagion.

Regarding the other region, the core-bank also goes bankrupt, since qDP
Bj0

< qDN
Bj0

as shown

in the proof of proposition 1. Then, supposing that only peripheral institution of region j and
core-banks defaults, the payment per unit of deposit held in B−j0 is given by:

q′
B−j

0
=
γdB−j

0
c1 + r

R
(1− γ)dB−j

0
c2 + (wH − γ)c1

∑
i∈B−j\{B−j

0 }
di + (wH − γ)q′′

Bj0

∑
i∈B−j di

dB−j
0

+ (wH − γ)
∑

i∈B−j∪Bj\{B−j
0 }

di
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Since (12) é satisfied and the regions are ex-ante identical, the entire network collapses.

�

7) The Threshold of Core-Bank’s Size

Since the same parameters of proposition 1 are considered, it follows:

(wH − γ)(1− γ)c1dBj0
dBj0

+ (wH − γ)
∑

i∈Bj∪B−j\{Bj0}
di

[
1− c2

c1

r

R

]
> (1− γ)c1

r

R

[
c2
c1
− 1

]

Manipulating the inequality and dividing both side by (1 +wH − γ), I show that A is bigger
than one.

A ≡ (wH − γ)c1
(1 + wH − γ)(c2 − c1)

[
R

r
− c2
c1

]
>

1 +
(wH − γ)

(1 + wH − γ)

∑
i∈Bj∪B−j\{Bj0,B

−j
0 }

di
dBj0

 > 1

�

8) Proof Lemma 3

Suppose that bank k is hit by a shock ε > ε.

Case 1: k ∈ Bj \ {Bj
0}

In order to have direct contagion, it is necessary that LGDkBj0
> bBj0

(γ). I.e:

(wH − γ)dk

[
1− r

R
c2
c1

]
1 + wH − γ

> dBj0
r

R

[
c2
c1
− 1

]

An higher heterogeneity might occur as a result of an increase of core-bank’s size, a decrease
of peripheral bank’s size or both. Then, the result clearly follows.
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Caso 2: k = Bj
0

The initial loss-given-default of a core-bank is:

(1− γ)c1

[
1− r

R
c2
c1

]
1 + (wH − γ)

∑
i∈Bj∪B−j\{Bj0}

di
d
B
j
0

Supposing dBj0
≥ di ∀i ∈ Bj ∪B−j, then the loss-give-default increases when the size hetero-

geneity gets higher.

i) Peripheral Counterpart

The exposure of a counterpart i to the central agent is given by (wH−γ)di. Assuming di = d
∀i ∈ Bj \ {Bj

0} and j ∈ {A,B}, the inequality below might hold in case of contagion.

(wH − γ)

[
1− r

R
c2
c1

]
1 + (wH − γ)

(
1 + 2n d

d
B
j
0

) >
r

R

[
c2
c1
− 1

]

As a consequence, these counterparts suffer contagion more easily when size heterogeneity
increases.

ii) Central Counterpart

In case of contagion of a central counterpart, the inequality below must hold.

1 +
∑

i∈B−j\{B−j
0 }

di
dB−j

0

 (wH − γ)

[
1− r

R
c2
c1

]
1 + (wH − γ)

∑
i∈Bj∪B−j\{Bj0}

di
d
B
j
0

>
r

R

[
c2
c1
− 1

]

Analysing the inequality above, it is clear that an higher size heterogeneity has two different
effects on it. Suppose that d = di ∀i ∈ Bj \ {Bj

0}, where j ∈ {A,B}. Furthermore, define
x ≡ d

d
B
j
0

, then:

(1 + nx)(wH − γ)

1 + wH − γ + 2n(wH − γ)x
>

r
R

[
c2
c1
− 1
]

[
1− r

R
c2
c1

]
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Note that the derivative of the left side of the inequality (f) with respect to x is given below
and, as a consequence, the result is proven.

∂f

∂x
=

n(wH − γ)[1− (wH − γ)]

[1 + wH − γ + 2n(wH − γ)x]2
> 0

�

9) Proof of Lemma 4

Suppose that di = d ∀i ∈ Bj and j ∈ {A,B}, then the loss-given-default per unit of deposit
is given by:

c1 − qBj0 =
(1− γ)dBj0

c1

[
1− r

R
c2
c1

]
dBj0

+ (wH − γ)(dB−j
0

+ 2nd)

Thus,

∂(c1 − qBj0)
∂n

= −
2d(wH − γ)(1− γ)dBj0

c1

[
1− r

R
c2
c1

]
[dBj0

+ (wH − γ)(dB−j
0

+ 2nd)]2
< 0

Since R
r
> c2

c1
, the derivative above is negative. I still need to verify the relation between the

total loss induced to the central counterpart and n. The loss-given-default in that case is:

LGDBj0B
−j
0

=
(wH − γ)(dB−j

0
+ nd)(1− γ)c1

[
1− c2

c1
r
R

]
dBj0

+ (wH − γ)(dB−j
0

+ 2nd)
(14)

Then,

∂LGDBj0B
−j
0

∂n
=
dBj0

(1− γ)(1− wH + γ)(wH − γ)dc1

[
1− c2

c1
r
R

]
[dBj0

+ (wH − γ)(dB−j
0

+ 2nd)]2
> 0

�
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10) Proof of Lemma 5

First, I analyse the effects of a shock ε > ε in a core-bank. Suppose di = d ∀i ∈ Bj \ {Bj
0}

and j ∈ {A,B}, then:

qBj0
=
γdBj0

c1 + (1− γ)dBj0
c2

r
R

+ (wH − γ)c1(dBj0
+ 2nd)

dBj0
+ (wH − γ)(2nd+ dB−j

0
)

Clearly, lim
n→∞

qBj0
= c1. Thus, ∀i ∈ Bj \ {Bj

0}:

lim
n→∞

LGDBj0i
= lim

n→∞
(wH − γ)di(c1 − qBj0) = (wH − γ)di(c1 − lim

n→∞
qBj0

) = 0

It means that peripheral banks of region j do not suffer contagion initially. However, I
still need to analyse what happens to the central counterpart. If this institution does not go
bankrupt, it is possible to say that the shock in a central agent is not able to cause a systemic
collapse. The central counterpart does not need to liquidate all its assets when the inequality
above is satisfied.

lim
n→∞

LGDBj0B
−j
0
< lim

n→∞
bB−j

0
(γ)

Using (14) and knowing that the liquidity buffer does not depend on n, the inequality above
is equivalent to:

(1− γ)dBj0
c1

2

[
1− r

R

c2
c1

]
< dBj0

(1− γ)c1
r

R

[
c2
c1
− 1

]

Then, the core-bank does not become insolvent when the inequality below holds.

[
R

r
− c2
c1

]
< 2

[
c2
c1
− 1

]
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Since the contagion occurrence depends on parameters value, it is necessary to analyse the
worst case. In other words, I should answer the following question: does the system collapse
when both core-banks go bankrupt? In equilibrium, the payment per unit of deposit held in a
core-bank is:

qBj0
=
dBj0

γc1 + dBj0
(1− γ)c2

r
R

+ (wH − γ)[2ndc1 + (nd+ dBj0
)qB−j

0
]

dBj0
+ (wH − γ)(2nd+ dB−j

0
)

Once qB−j
0

is similar to qBj0
, I can write this variables as a function of parameters.

qBj0
=

[
dBj0

γc1 + dBj0
(1− γ)c2

r
R

]
[dBj0

+ (wH − γ)(3nd+ 2dBj0
)]

d2
Bj0

+ 2(wH − γ)(2nd+ dBj0
) + (wH − γ)2(3n2d2 + 2nddBj0

)
+

(wH − γ)c1nd[dBj0
+ (wH − γ)(2nd+ dBj0

) + (wH − γ)(nd+ dBj0
)]]

d2
Bj0

+ 2(wH − γ)(2nd+ dBj0
) + (wH − γ)2(3n2d2 + 2nddBj0

)

Therefore, it follows that:

lim
n→∞

qIj = c1

It can be concluded that the loss-given-default induced by core-banks to peripheral insti-
tutions tends to zero, even if both central agents go bankrupt. The same is verified when a
peripheral institution k ∈ Bj is hit by a shock ε > ε and dIj < dMIj .

�
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