Implicit inflation and risk premiums for the Brazilian securities market

Lucas Argentieri Mariani
Prof. Dr. Márcio Poletti Laurini

TD-E 08 / 2014
Universidade de São Paulo
Faculdade de Economia, Administração e Contabilidade
de Ribeirão Preto

Reitor da Universidade de São Paulo
Marco Antonio Zago

Diretor da FEA-RP/USP
Dante Pinheiro Martinelli

Chefe do Departamento de Administração
Sonia Valle Walter Borges de Oliveira

Chefe do Departamento de Contabilidade
Adriana Maria Procópio de Araújo

Chefe do Departamento de Economia
Renato Leite Marcondes

CONSELHO EDITORIAL

Comissão de Pesquisa da FEA-RP/USP

Faculdade de Economia, Administração e Contabilidade de Ribeirão Preto
Avenida dos Bandeirantes, 3900
14040-905 Ribeirão Preto - SP

A série TEXTO PARA DISCUSSÃO tem como objetivo divulgar: i) resultados de trabalhos em desenvolvimento na FEA-RP/USP; ii) trabalhos de pesquisadores de outras instituições considerados de relevância dadas as linhas de pesquisa da instituição. Veja o site da Comissão de Pesquisa em www.cpq.fearp.usp.br. Informações: e-mail: cpq@fearp.usp.br
Implicit inflation and risk premiums for the Brazilian securities market

Lucas Argentieri Mariani 1
Marcio Poletti Laurini 2

Abstract

The breakeven inflation (BEI), differential between nominal and real yields of bonds of the same maturity, is often used as a predictor of future inflation. The model presented here makes a decomposition of this interest rate differential in risk premiums and implied inflation using a parametric model based on no-arbitrage conditions. This model jointly estimates the two curves using a model of 4 factors of the Nelson-Siegel family. The results obtained have better forecasts on average squared error than the Focus Bulletin forecasts. The estimations of breakeven inflation and implied inflation of the model are shown unbiased estimators of future inflation for short horizons and carry some information for long horizons. The results also indicate that there are gains in the imposition of no-arbitrage.

Keywords: Inflation, Risk Premium and Bond Markets

1 Introduction

For proper management of a monetary policy, Central Banks should be interested in the inflation expectations of consumers and entrepreneurs. These agents’ expectations are important for determining future inflation. In general, the data of future inflation comes from two main sources: the research expectations and the information contained in assets in the financial market. Data from surveys has a lower frequency, while the data of the financial assets market has a higher frequency. Another limitation of surveys is that we only have market expectations for horizons for 1 year, which means we do not have access to long-term inflation. So, the Central Bank can not verify if the market expectations of long-term inflation are aligned with the goals of the monetary authority.

Financial market prices can be accessed daily or even intraday form, and can generate information to a wider range of horizons. In Brazil we can estimate the expected inflation for up to five years in advance. Moreover, as ponders Val, Barbedo & Maia (2011) surveys reflect the opinion of financial institutions, but not the bets they make

1 Economics Department, Faculty of Economics and Management of Ribeirão Preto, University of São Paulo
2 Economics Department, Faculty of Economics and Management of Ribeirão Preto, University of São Paulo
on the market. Thus, when we analyze the information from financial market, we have
daily updated information with different horizons, which reflects future expectations of
the price that agents believe.

Due to these problems with expectations taken from surveys, different ways of ex-
tracting implicit expectations in financial assets have been proposed. A key work in this
literature was Svensson & Soderling (1997), which discusses how to extract expectations
through changes in asset prices. In our case, we use interest rate differentials between
nominal bonds, which pay a fixed amount of interest, and real bonds, which are indexed
to inflation plus a nominal interest rate. Nominal bonds have embedded in them the so-
called implicit inflation. In this paper, to estimate expected inflation, we use Treasury
bills (or LTN), which is a nominal title, and the National Treasury Notes Type B (or
NTN-B), which are indexed to the IPCA titles (Consumer Index Price). We use NTN-B
because the inflation that serves as an anchor for the decision making of policymakers to
meet the inflation targets, besides being the title of greatest liquidity.

The interest rate differential between real and nominal bonds of the same maturity
is known as breakeven inflation (BEI). The BEI is an indicator of expected inflation, how-
ever, it is an imperfect indicator because it includes inflation risk premiums. The biggest
problem is that the estimation of the risk premium in general depends on the specifica-
tion of a parametric model, which defines the market risk premium for the uncertainty
associated with future inflation.

Due that, the major contribution of this paper is that using a parametric model
with no-arbitrage conditions, thus we can decompose de BEI rate in expected inflation and
risk premium. Some articles, for Brazilian bond markets, use similar parametric models
(eg Caldeira & Furlani (2014)) to extract the implicit inflations, but none of them imposes
these restrictions. Thus, our work tries to get a more accurate measure of the expected
inflation on financial markets.

Several researches were completed using government bonds to extract expected
inflation for different markets (eg Woodward (1990) and Deacon & Derry (1994) for the
British market, Shen & Corning (2001) for the American market, Alonso, Blanco & Rio
(2001) for the French market). Christensen, Dion & Reid (2004) found a consistently
higher than market expectations for the Canadian market. Therefore, concluding that
market research is a consistent estimate of inflation expectations and the BEI rate is a
biased estimate by the presence of risk premiums. Scholtes (2002) concludes that for the
English case, the BEI rate has a better empirical performance than the surveys about
inflation expectations.

The decomposition of the BEI rate in inflation risk premium and inflation expec-
tations using a parametric model for the risk premium can be done through an affine free
arbitrage model, which is most commonly used to represent the term structure of interest
rates in finance. These models are typically specified using a set of latent factors that cap-
ture the movements in the yield curves in time. [Duffie & Kan (1996)] say that this model is popular because the yield curves are a linear function of the latent factors and loads, which is an advantage because of the existence of analytical solutions and the fact that this linear structure can be estimated using the Kalman filter. However, the canonical form of this model suffers from two problems. The first is that the maximum likelihood estimation of this class of model is subject to a problem of local maxima. Thus, we can obtain estimates with different economic implications. Moreover, it has a poor empirical performance to fit the observed and projected curves, as discussed in [Duffee (2002)].

Another line of research on parallel of modeling of the term structure is based on statistical models. These models are based on factorial representations without any direct economic interpretation as decomposition and principal component models based on the parameterization of [Nelson & Siegel (1987)], a dynamic formulation based on a structure of latent factors was proposed by [Diebold & Li (2006)]. These models have a better fit of the curves and more accurate forecasts than the similar models, and so, were extensively adopted in the modeling of yield curves, as discussed in [Diebold & Rudebusch (2011)].

However, the absence of a complete economic interpretation, the lack of conditions for which there is no arbitrage and explicit ways to market premiums for risk preclude its use in applications requiring a structural interpretation of the results. A version of the Nelson-Siegel dynamic models with the imposition of no-arbitrage conditions in a formulation was proposed in order [Christensen, Diebold & Rudebusch (2011)], obtaining a model with empirical power and consistent with no-arbitrage. This model can decompose the BEI rate in implied inflation rate and risk premium. The authors conclude that their estimates are close to the financial market surveys and risk premiums vary around zero. Moreover, they suggest that the long-term expectations are well anchored. They also say that the use of this approach has the advantage of being easily updated and reestimated the Kalman filter, generating the advantage of having high frequency results in what is desirable for policy makers and financial market professionals.

For the Brazilian market, we can cite the work of [Val, Barbedo & Maia (2011)] which applies several different methodologies to estimate implicit inflation and compare it to the estimates of the BEI rate. The authors find a prize of relatively low inflation risk for the Brazilian market. And say that the surveys embody a prize greater risk than securities traded. Another important point is that the market for indexed bonds just happened to have an important role since 2006, with increases in liquidity and trading volume.

In the work of [Vicente & Guillen (2013)], the authors test whether breakeven inflation is a good measure of future inflation. With data from Brazilian government bonds, the authors perform two tests, using univariate regression methods. They perform a test to see if this breakeven inflation is an unbiased estimator of future inflation. The authors find evidence that breakeven inflation is an unbiased estimator for short horizons (3 and 6 months), longer for medium-term horizon (12 and 18 months). This variable has little
explanatory power and for longer horizons (24 and 30 months) find one counterintuitive result that there is a negative relationship between future inflation rates and the BEI.

Caldeira & Furlani (2014) employ a Svensson (1994) model with four latent for nominal bonds and four factors for the real titles. From this model to find the BEI rate differential between bond yields. Then adopt a similar test used by Vicente & Guillen (2013) but beyond doing regressions also use a state-space formulation to perform the test. Thus, the authors find that the breakeven inflation is an unbiased estimator for inflation 3 months in advance and it provides information only for shorter horizons. Also, compare the model predictions with those of a VAR model and market expectations of the Top 5 Focus Bulletin. The BEI rates show themselves superior to VAR models proposed by the authors, but worse than the Top 5.

The major contribution of the work of Christensen, Diebold & Rudebusch (2011) is to compare the results of the interest rate differential curves nominal and real interest with a Nelson-Siegel model with no-arbitrage restrictions. Through this model we can then decompose the BEI in expected inflation and risk premium. Here, we replicate this approach in order to compare models among themselves and with the predictions of the Focus Bulletin as a benchmark for the Brazilian market.

The paper is organized as follows: in the following section we describe the model and how we can decompose the interest rate differentials of indexed and nominal bonds in expected inflation and risk premium. Later, we will present the methodology used, the choice of specification and the coefficients found in Section 3. Section 4 presents the main results, the fit of the model and test whether our measure of implied inflation is useful for predicting future inflation, comparing the model results with the Focus Bulletin forecasts. To finalize, the Section 5 presents the conclusions and the most relevant results of the work.

2 Model

This section describes one Nelson-Siegel Arbitrage-Free Model in daily data from the BM&F/BOVESPA for LTN and NTN-B zero-coupon bonds. With this model we can decompose the interest rate differential between expected inflation and a risk premium. Below, we present a theoretical discussion of how to decompose the interest rate differentials in implicit inflation and risk premiums. Additionally, we present the empirical approach used in this work.

2.1 Theoretical Discussion

Proceeding with the approaches of Cochrane (2005) and Christensen, Lopez & Rudebusch (2010) we will decompose the spread between real and nominal bonds in inflation implied and risk premium using a formulation in continuous time. Defining M_t^R
e M_t^N as stochastic discount factors for the real and nominal, respectively. By no-arbitrage conditions we have:

$$P_t^i M_t^i = E_t^P [P_{t+\tau}^i M_{t+\tau}^i] \quad (1)$$

with $i = R, N$. This equation represents the decision making of the agent forgoing present consumption to invest and consume in the future. Equality in (1) is derived from the first order condition, for details see [Cochrane (2005)]. So, we can normalize the price $P_{t+\tau}^i = 1$, i.e. an unitary payoff in period τ and rewrite prices as:

$$P(\tau)_t^i = E_t^P \left[\frac{M_{t+\tau}^i}{M_t^i} \right] \quad (2)$$

In addition, the no-arbitrage condition requires that there be consistency between the prices of real and nominal bonds. Thus, we can define Q_t as the general price level, which is nothing more than the relationship between the stochastic discount factors:

$$Q_t = \frac{M_t^R}{M_t^N} \quad (3)$$

Under the hypothesis that the stochastic discount factors has the following dynamics:

$$\frac{dM_t^i}{M_t^i} = -r_t^i dt - \Gamma_t dW_t^P \quad (4)$$

ie the drift part of the process is determined by the instantaneous interest rate, which varies for each of the types of securities, and a part that depends on the diffusion Γ_t, which is the market price of risk is constant between the types of securities and the shocks of Brownian motion. From (3) then we can find by Itô's Lemma, the dynamics of the price level:

$$dQ_t = (r_t^R - r_t^N)Q_t dt \quad (5)$$

therefore, in the absence of arbitrage the instantaneous rate of growth of prices is determined by the instantaneous differential interest rates between real and nominal bonds, so the Fisher equation holds for the instantaneous rate and there is no risk premium. Again using Ito’s Lemma, we can see that:

$$d\ln(Q_t) = \frac{1}{Q_t} dQ_t - \frac{1}{2} \frac{1}{Q_t} dQ_t^2 = \frac{1}{Q_t} dQ_t = (r_t^R - r_t^N) dt \quad (6)$$
integrating both sides and taking the exponential we have:

$$Q_{t+\tau} = Q_t e^{\int_t^{t+\tau} (r_i^R - r_i^N) dt}$$

(7)

With this we can write the price of the nominal title due to price level and the real price, so:

$$P(\tau)_t^N = E_t^P \left[\frac{M_{t+\tau}^R}{M_t^R} \right] \times E_t^P \left[\frac{Q_t}{Q_{t+\tau}} \right] \times \left(1 + \frac{\text{cov}(\frac{M_{t+\tau}^R}{M_t^R}, Q_{t+\tau})}{E_t^P \left[\frac{M_{t+\tau}^R}{M_t^R} \right] \times E_t^P \left[\frac{Q_t}{Q_{t+\tau}} \right]} \right)$$

(8)

converting the asset price in yield:

$$P(\tau)_t^N = P_t^N e^{y_t^N} \rightarrow y_t^N = -\frac{1}{\tau} \ln \left[\frac{P_t^N}{P(\tau)_t^N} \right]$$

(9)

we can rewrite as:

$$y_t^N(\tau) = y_t^R(\tau) + \pi_t^e(\tau) + \phi_t(\tau)$$

(10)

being $y_t^N(\tau)$ the nominal bonds yield to maturity τ, $y_t^R(\tau)$, the real bond yield for the same maturity, $\pi_t^e(\tau)$ implicit inflation bond market in period t to period $t + \tau$ and $\phi_t(\tau)$ the risk premium to hold nominal title until $t + \tau$. We can write the implicit inflation as:

$$\pi_t^e(\tau) = -\frac{1}{\tau} \ln \left[Q_t/Q_{t+\tau} \right] = -\frac{1}{\tau} \ln E_t^P \left[e^{-\int_t^{t+\tau} (r_i^R - r_i^N) dt} \right]$$

(11)

and the risk premium as:

$$\phi_t(\tau) = -\frac{1}{\tau} \ln \left(1 + \frac{\text{cov}(\frac{M_{t+\tau}^R}{M_t^R}, Q_{t+\tau})}{E_t^P \left[\frac{M_{t+\tau}^R}{M_t^R} \right] \times E_t^P \left[\frac{Q_t}{Q_{t+\tau}} \right]} \right)$$

(12)

therefore, the risk premium on keeping a nominal title can be positive or negative. The risk premium will be positive only if the $\text{cov}(\frac{M_{t+\tau}^R}{M_t^R}, Q_{t+\tau}) < 0$, i.e., an increase in the price level, which is a moment of loss of purchasing power, has a positive effect on the price of real titles.

As defined in the first part of this work the BEI (breakeven inflation) to $t + \tau$ is the interest rate differential between real and nominal bonds to maturity τ. As we saw in
equation 10 we can decompose the BEI in implicit inflation and risk premium:

\[
BEI(\tau)_t = y_t^N(\tau) - y_t^R(\tau) = \pi_t^e(\tau) + \phi_t(\tau)
\] (13)

2.2 Empirical Approach

To know what the best specification for the joint model for real and nominal bonds is, we need to determine the number of latent factors in the model. In general, the models for term structure of interest rates use three factors: the level, slope and curvature. These factors are generally sufficient to explain the variation cross-section of titles. The first term is the level that determines the long-term factors. The second factor can be considered the slope factor or short term or the spread while the third factor is considered the curvature factor or medium term.

To test how many factors it is necessary, we use the principal component analysis, analyzing data from January 2006 to October 2013 for nominal bonds with a maturity of 1, 3, 6, 12, 15, 18, 21, 24, 30, 36, 42, 48 and 60 months and for indexed bonds for the same maturities. We use this period because IPCA indexed titles seem to have little liquidity for periods before this. Table 1 shows the principal components analysis in order to see how many components are sufficient to explain the curves, four factors explain more than 99.2% of the curves. Thus, we propose a model with: two factors of levels, one for each type of security, a slope factor and one factor common curvature.

Christensen, Lopez & Rudebusch (2010) showed that the Arbitrage-Free with Nelson-Siegel factors model has a good degree of adjustment to the term structure of interest rates and generates good predictions out of sample. To capture possible differences in scale between the slopes of the nominal and real bonds, also estimate the \(\alpha \), which was not done in previous works.

The Q dynamic of the Nelson-Siegel factors for nominal bonds is given by the following stochastic differential equations:

\[
\begin{pmatrix}
\frac{dL_t^N}{dt} \\
\frac{dS_t}{dt} \\
\frac{dC_t}{dt} \\
\frac{dL_t^R}{dt}
\end{pmatrix} =
\begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & -\lambda & \lambda & 0 \\
0 & 0 & -\lambda & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}
\begin{pmatrix}
L_{t-1}^N - \theta_1^{P,J} \\
S_{t-1} - \theta_2^{P,J} \\
C_{t-1} - \theta_3^{P,J} \\
L_{t-1}^R - \theta_4^{P,J}
\end{pmatrix}
+ \Sigma^J
\]

\begin{pmatrix}
DW^{L,N,P} \\
DW^{S,P} \\
DW^{C,P} \\
DW^{L,R,P}
\end{pmatrix}
\] (14)

and the P dynamics is given by:

\[
\begin{pmatrix}
\frac{dL_t^N}{dt} \\
\frac{dS_t}{dt} \\
\frac{dC_t}{dt} \\
\frac{dL_t^R}{dt}
\end{pmatrix} =
\begin{pmatrix}
K_{11}^{P,J} & K_{12}^{P,J} & K_{13}^{P,J} & K_{14}^{P,J} \\
K_{21}^{P,J} & K_{22}^{P,J} & K_{23}^{P,J} & K_{24}^{P,J} \\
K_{31}^{P,J} & K_{32}^{P,J} & K_{33}^{P,J} & K_{34}^{P,J} \\
K_{41}^{P,J} & K_{42}^{P,J} & K_{43}^{P,J} & K_{44}^{P,J}
\end{pmatrix}
\begin{pmatrix}
L_{t-1}^N - \theta_1^{P,J} \\
S_{t-1} - \theta_2^{P,J} \\
C_{t-1} - \theta_3^{P,J} \\
L_{t-1}^R - \theta_4^{P,J}
\end{pmatrix}
+ \Sigma^J
\begin{pmatrix}
DW^{L,N,P} \\
DW^{S,P} \\
DW^{C,P} \\
DW^{L,R,P}
\end{pmatrix}
\] (15)

with diagonal \(\Sigma^J \). As we saw in the previous section, the momentum P is very important
Table 1 – Principal component analysis of indexed and nominal bonds

<table>
<thead>
<tr>
<th>Maturity</th>
<th>Real 1º PC</th>
<th>Real 2º PC</th>
<th>Real 3º PC</th>
<th>Real 4º PC</th>
<th>Real 5º PC</th>
<th>Real 6º PC</th>
<th>Nominal 1º PC</th>
<th>Nominal 2º PC</th>
<th>Nominal 3º PC</th>
<th>Nominal 4º PC</th>
<th>Nominal 5º PC</th>
<th>Nominal 6º PC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Month</td>
<td>0.134553</td>
<td>0.467604</td>
<td>0.014705</td>
<td>0.78545</td>
<td>-0.27805</td>
<td>0.258406</td>
<td>0.17434</td>
<td>0.24443</td>
<td>0.298763</td>
<td>-0.13154</td>
<td>0.433621</td>
<td>0.344089</td>
</tr>
<tr>
<td>3 Month</td>
<td>0.167591</td>
<td>0.357665</td>
<td>-0.04919</td>
<td>-0.05793</td>
<td>0.038507</td>
<td>-0.29027</td>
<td>0.18341</td>
<td>0.087963</td>
<td>0.325201</td>
<td>-0.11281</td>
<td>0.041807</td>
<td>0.086815</td>
</tr>
<tr>
<td>6 Month</td>
<td>0.184117</td>
<td>0.190394</td>
<td>-0.07081</td>
<td>0.14773</td>
<td>-0.0671</td>
<td>0.121424</td>
<td>0.188119</td>
<td>0.014526</td>
<td>-0.17766</td>
<td>0.09155</td>
<td>0.09786</td>
<td>0.07519</td>
</tr>
<tr>
<td>9 Month</td>
<td>0.189925</td>
<td>0.142082</td>
<td>-0.08897</td>
<td>-0.17552</td>
<td>-0.13651</td>
<td>-0.02966</td>
<td>0.188029</td>
<td>0.021177</td>
<td>-0.19071</td>
<td>-0.07273</td>
<td>0.06763</td>
<td>0.095541</td>
</tr>
<tr>
<td>12 Month</td>
<td>0.187</td>
<td>0.102497</td>
<td>-0.11464</td>
<td>-0.16004</td>
<td>-0.16635</td>
<td>-0.01608</td>
<td>0.187785</td>
<td>0.01158</td>
<td>-0.20881</td>
<td>-0.0501</td>
<td>0.01124</td>
<td>0.109623</td>
</tr>
<tr>
<td>15 Month</td>
<td>0.188144</td>
<td>0.069742</td>
<td>-0.1429</td>
<td>-0.13853</td>
<td>-0.15875</td>
<td>0.002999</td>
<td>0.187608</td>
<td>0.01559</td>
<td>-0.22502</td>
<td>0.02648</td>
<td>0.096531</td>
<td>0.159568</td>
</tr>
<tr>
<td>18 Month</td>
<td>0.185925</td>
<td>0.142082</td>
<td>-0.08897</td>
<td>-0.17552</td>
<td>-0.13651</td>
<td>-0.02966</td>
<td>0.188144</td>
<td>0.01158</td>
<td>-0.20881</td>
<td>-0.0501</td>
<td>0.01124</td>
<td>0.109623</td>
</tr>
<tr>
<td>21 Month</td>
<td>0.187898</td>
<td>0.044778</td>
<td>-0.16131</td>
<td>-0.12077</td>
<td>-0.13889</td>
<td>0.036049</td>
<td>0.188144</td>
<td>0.01158</td>
<td>-0.20881</td>
<td>-0.0501</td>
<td>0.01124</td>
<td>0.109623</td>
</tr>
<tr>
<td>24 Month</td>
<td>0.188104</td>
<td>0.024458</td>
<td>-0.17109</td>
<td>0.114176</td>
<td>-0.0671</td>
<td>0.121424</td>
<td>0.188104</td>
<td>0.014526</td>
<td>-0.17766</td>
<td>0.09155</td>
<td>0.09786</td>
<td>0.07519</td>
</tr>
<tr>
<td>26 Month</td>
<td>0.188119</td>
<td>0.035426</td>
<td>-0.17766</td>
<td>0.09155</td>
<td>-0.0671</td>
<td>0.121424</td>
<td>0.188119</td>
<td>0.014526</td>
<td>-0.17766</td>
<td>0.09155</td>
<td>0.09786</td>
<td>0.07519</td>
</tr>
<tr>
<td>29 Month</td>
<td>0.188125</td>
<td>0.046227</td>
<td>-0.16004</td>
<td>-0.12935</td>
<td>-0.0671</td>
<td>0.121424</td>
<td>0.188125</td>
<td>0.014526</td>
<td>-0.17766</td>
<td>0.09155</td>
<td>0.09786</td>
<td>0.07519</td>
</tr>
<tr>
<td>30 Month</td>
<td>0.188125</td>
<td>0.046227</td>
<td>-0.16004</td>
<td>-0.12935</td>
<td>-0.0671</td>
<td>0.121424</td>
<td>0.188125</td>
<td>0.014526</td>
<td>-0.17766</td>
<td>0.09155</td>
<td>0.09786</td>
<td>0.07519</td>
</tr>
<tr>
<td>32 Month</td>
<td>0.188125</td>
<td>0.046227</td>
<td>-0.16004</td>
<td>-0.12935</td>
<td>-0.0671</td>
<td>0.121424</td>
<td>0.188125</td>
<td>0.014526</td>
<td>-0.17766</td>
<td>0.09155</td>
<td>0.09786</td>
<td>0.07519</td>
</tr>
<tr>
<td>33 Month</td>
<td>0.188125</td>
<td>0.046227</td>
<td>-0.16004</td>
<td>-0.12935</td>
<td>-0.0671</td>
<td>0.121424</td>
<td>0.188125</td>
<td>0.014526</td>
<td>-0.17766</td>
<td>0.09155</td>
<td>0.09786</td>
<td>0.07519</td>
</tr>
<tr>
<td>35 Month</td>
<td>0.188125</td>
<td>0.046227</td>
<td>-0.16004</td>
<td>-0.12935</td>
<td>-0.0671</td>
<td>0.121424</td>
<td>0.188125</td>
<td>0.014526</td>
<td>-0.17766</td>
<td>0.09155</td>
<td>0.09786</td>
<td>0.07519</td>
</tr>
<tr>
<td>36 Month</td>
<td>0.188125</td>
<td>0.046227</td>
<td>-0.16004</td>
<td>-0.12935</td>
<td>-0.0671</td>
<td>0.121424</td>
<td>0.188125</td>
<td>0.014526</td>
<td>-0.17766</td>
<td>0.09155</td>
<td>0.09786</td>
<td>0.07519</td>
</tr>
</tbody>
</table>

\[
g(\tau)^N = L_t^N + S_t((1 - e^{-\lambda\tau})/\lambda\tau) + C_t((1 - e^{-\lambda\tau})/\lambda\tau - e^{-\lambda\tau}) + \epsilon_{N,\tau} \tag{16}
\]

\[
g(\tau)^R = L_t^R + \alpha S_t((1 - e^{-\lambda\tau})/\lambda\tau) + \alpha C_t((1 - e^{-\lambda\tau})/\lambda\tau - e^{-\lambda\tau}) + \epsilon_{R,\tau} \tag{17}
\]

being \(L_t^N \) e \(L_t^R \) the factors of level of nominal and real bonds, respectively, \(S_t \) the slope factor and \(C_t \), the curvature factor and \(\alpha \) a term adjustment for the real bonds.

To facilitate the estimation, we will discretize this process as in Mouabbi (2013). Being \(X_t = (L_t^N, S_t, C_t, L_t^R) \), we can rewrite equation 15 as:

\[
X_T = [I - e^{KP(T-t)}] \theta^P + e^{KP(T-t)} X_t + \eta_t \tag{18}
\]

thus the transition equation can be estimated in discrete time as a VAR (1). This estimation procedure has been used in Christensen, Lopez & Rudebusch (2012) by quasi-maximum likelihood using the Kalman filter. This transformation allows us to estimate and recover the parameters of the P dynamic from equation 15. In the work of Christensen, Lopez & Rudebusch (2010) the authors show that for a Gaussian approach we
can rewrite the equation:

\[E_t^p \left[e^{-\int_t^{t+\tau} (\sigma^2 - r_N^2)dt} \right] = \exp [B^\pi(\tau) X_t + A^\pi(\tau)] \quad (19) \]

\(B^\pi(\tau) \) and \(A^\pi(\tau) \) being the solutions of differential equations solved by the Runge-Kutta fourth order. From this we can calculate the implied inflation and risk premiums.

3 Estimation

The estimates made in this study used the methodology of the Kalman filter, following Christensen, Lopez & Rudebusch (2012). The measurement equations can be rewritten as:

\[y_t = BX_t + \epsilon_t \quad (20) \]

in which \(\epsilon_t \) represent errors of measurement equations that are independent and identically distributed assumption (iid) for each maturity. The equation of state of the factors is given by Equation (18) can be rewritten as:

\[X_t = \Theta + \Phi X_{t-1} + \eta_t \quad (21) \]

error structure given by:

\[
\begin{pmatrix} \eta_t \\ \epsilon_t \end{pmatrix} \sim N \left(\begin{pmatrix} 0 & R & 0 \\ 0 & 0 & Q \end{pmatrix} \right)
\]

(22)

where \(R = diag(\sigma^2) \) (4×4) and measurement equations have the same variance with \(Q = diag(\sigma^2) \). Furthermore, the optimality of the Kalman filter needs that errors are orthogonal to the state variable: \(E(X_t \eta_t) = 0 \) and \(E(X_t \epsilon_t) = 0 \).

An estimation must be both flexible and parsimonious. Thus, it is important that the model is well specified. Additionally, to decompose the BEI rate it is very important that our dynamic P is correct. Therefore, we use several statistical tests with the information criterion to choose the best specification. The results of these tests are presented in the table. All information criterion (Akaike information criterion (AIC), Bayesian (BIC) and Hannan-Quinn) indicate that the best specification is the diagonal model.

Table 3 shows estimated values for the chosen model. In this table we present the estimates for the matrix \(\phi \) parameters, \(\theta \), the \(\Sigma \) in addition to the decay factor of the measure (\(\lambda \)) equation and \(\alpha \) for the actual titles. We can see that we estimate a decay factor 0.19, near the value of other work applied to Brazil. The parameter \(\alpha \) was estimated to 0.97, the work of Christensen, Lopez & Rudebusch (2010) finds a value of 0.92.
4 Latent factors and adjustment of bonds

In this section we present, first, the values found for the latent factors, as well as the forecasts for the analyzed bonds. Later we will show the values found for the implicit inflation and risk premiums for the domestic market. And propose a test to see if the implicit inflation is a good predictor of the future inflation.

4.1 Latent factors and adjustment of bonds

Figures 1 and 2 show the level, slope and curvature factors estimates for real and nominal bonds for the period analyzed. The correlation between these two factors is the

Note - We imposed the least significant parameter was equal to zero in each constraint.

<table>
<thead>
<tr>
<th>Tests</th>
<th>logL</th>
<th>Parameters</th>
<th>AIC</th>
<th>BIC</th>
<th>Hannan-Quinn</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unrestricted</td>
<td>-32612.9</td>
<td>27</td>
<td>34.10648</td>
<td>34.18487</td>
<td>34.13533</td>
</tr>
<tr>
<td>1 Restriction</td>
<td>-32653.9</td>
<td>26</td>
<td>34.33927</td>
<td>34.41473</td>
<td>34.36704</td>
</tr>
<tr>
<td>2 Restriction</td>
<td>-32636.5</td>
<td>25</td>
<td>34.32099</td>
<td>34.39264</td>
<td>34.34679</td>
</tr>
<tr>
<td>3 Restriction</td>
<td>-32546.7</td>
<td>24</td>
<td>34.01634</td>
<td>34.08099</td>
<td>34.04197</td>
</tr>
<tr>
<td>4 Restriction</td>
<td>-32567.9</td>
<td>23</td>
<td>34.03865</td>
<td>34.1054</td>
<td>34.06221</td>
</tr>
<tr>
<td>5 Restriction</td>
<td>-32393.3</td>
<td>22</td>
<td>33.85406</td>
<td>33.9179</td>
<td>33.87755</td>
</tr>
<tr>
<td>6 Restriction</td>
<td>-32339</td>
<td>21</td>
<td>33.79632</td>
<td>33.85726</td>
<td>33.81875</td>
</tr>
<tr>
<td>7 Restriction</td>
<td>-32338.1</td>
<td>20</td>
<td>33.79423</td>
<td>33.85236</td>
<td>33.81568</td>
</tr>
<tr>
<td>8 Restriction</td>
<td>-32339.5</td>
<td>19</td>
<td>33.79417</td>
<td>33.84993</td>
<td>33.81508</td>
</tr>
<tr>
<td>9 Restriction</td>
<td>-32315.8</td>
<td>18</td>
<td>33.60533</td>
<td>33.65757</td>
<td>33.62456</td>
</tr>
<tr>
<td>10 Restriction</td>
<td>32316.2</td>
<td>17</td>
<td>33.60646</td>
<td>33.65379</td>
<td>33.62461</td>
</tr>
<tr>
<td>11 Restriction</td>
<td>-31986.1</td>
<td>16</td>
<td>33.42252</td>
<td>33.46895</td>
<td>33.43961</td>
</tr>
<tr>
<td>Diagonal</td>
<td>-31972.2</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 3 - Estimated Parameters of the chosen model

<table>
<thead>
<tr>
<th>φ1</th>
<th>φ2</th>
<th>φ3</th>
<th>φ4</th>
<th>θ</th>
<th>α</th>
<th>λ</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.995</td>
<td>-0.016</td>
<td>0.972</td>
<td>0.193</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.878</td>
<td>0.264</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.972</td>
<td>0.060</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.000</td>
<td>-0.007</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4 Results

In this section we present, first, the values found for the latent factors, as well as the forecasts for the analyzed bonds. Later we will show the values found for the implicit inflation and risk premiums for the domestic market. And propose a test to see if the implicit inflation is a good predictor of the future inflation.

4.1 Latent factors and adjustment of bonds

Figures 1 and 2 show the level, slope and curvature factors estimates for real and nominal bonds for the period analyzed. The correlation between these two factors is the

4 Model with 1 constraint: φ1,4 = 0. Model with 2 constraints: φ1,4 = φ4,1 = 0. Model with 3 constraints: φ1,4 = φ4,1 = φ4,3 = 0. Model with 4 constraints: φ1,4 = φ4,1 = φ4,3 = φ3,4 = 0. Model with 5 constraints: φ1,4 = φ4,1 = φ4,3 = φ3,4 = φ2,4 = 0. Model with 6 constraints: φ1,4 = φ4,1 = φ4,3 = φ3,4 = φ2,4 = φ3,1 = 0. Model with 7 constraints: φ1,4 = φ4,1 = φ4,3 = φ3,4 = φ2,4 = φ3,1 = φ4,2 = 0. Model with 8 constraints: φ1,4 = φ4,1 = φ4,3 = φ3,4 = φ2,4 = φ3,1 = φ4,2 = φ1,3 = 0. Model with 9 constraints: φ1,4 = φ4,1 = φ4,3 = φ3,4 = φ2,4 = φ3,1 = φ4,2 = φ1,3 = φ2,1 = 0. Model with 10 constraints: φ1,4 = φ4,1 = φ4,3 = φ3,4 = φ2,4 = φ3,1 = φ4,2 = φ1,3 = φ2,1 = φ1,2 = 0. Model with 11 constraints: φ1,4 = φ4,1 = φ4,3 = φ3,4 = φ2,4 = φ3,1 = φ4,2 = φ1,3 = φ2,1 = φ1,2 = φ3,2 = 0.
level of 91.71 %, and we note that both the real and the nominal level factor show an increase for 2008, the period of the Lehmann Brothers crisis. This shows that the crisis influenced both real and nominal bonds - probably by the macroeconomic channel. In work of Diebold, Rudebusch & Aruoba (2006) the authors indicate that inflation influences the level factor. This may explain the increase of this factor both for 2008 and for 2013. The curvature and slope factors are much less volatile than the level following the literature (e.g. Diebold & Li (2006)).

Figure 1 – Level Factors Estimated

Figure 2 – Slope and curvature factors estimated

Table 4 shows measures of fit of the model for different maturity of the bonds in terms of Medium Error and the Root Mean Square Error. These measurements show that
the model generally provides a good fit, especially for real bonds, as can be seen by the smaller squared errors for these series.

4.2 Implicit Inflation and Risk Premiums

From the equation 19, we can calculate the implied inflation of our model. As discussed in section 2, the BEI rate can be decomposed into implicit inflation and risk premium. From equation 13, and taking the implicit inflation as described, we can calculate the risk premium for each maturity.

Using the same approach of Christensen, Lopez & Rudebusch (2010), we compared our results with market forecasts. In the present work we use as a benchmark the average forecasts of market expectations published in the Bulletin Focus. The model results are close to the Focus Bulletin forecasts over time. This may be the result of a more efficient bond market or the loss of credibility of BC in the conduct of monetary policy leading agents to report less conservative predictions.

We can see in Figures 3 and 4 that the implicit inflation model seems to be better than the Focus forecasts for both the horizon of 6 and 12 months. When we see that both the mean error and the mean squared error are smaller than those of the Focus forecasts,
Figure 3 – Focus Bulletin, Expected Inflation Model and IPCA performed 6 Months in advance

Figure 4 – Focus Bulletin, Expected Inflation Model and IPCA performed 12 Months in advance

in Table 5. When comparing the BEI rates with the implicit inflation, we also see that the implied inflation seems to be a superior predictor.
Figure 5 presents the risk premium model for maturities of 6, 12, 24 and 60 months.

Table 5 – Fit of the model

<table>
<thead>
<tr>
<th></th>
<th>6 Month</th>
<th>12 Month</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ME</td>
<td>RMSE</td>
</tr>
<tr>
<td>Implicita</td>
<td>-0.04912</td>
<td>0.592281</td>
</tr>
<tr>
<td>BEIR</td>
<td>0.043947</td>
<td>0.75811</td>
</tr>
<tr>
<td>FOCUS</td>
<td>0.454405</td>
<td>1.471076</td>
</tr>
</tbody>
</table>

Figure 5 – Risk premiums for 6, 12, 24 and 60 months of maturity

We see that risk premiums are higher for shorter horizons. The dynamics of risk premiums seems to be the same between the bonds of up to 24 Months, with only a difference of level. As for longer horizons (60 Month) agents can anchor inflation expectations in the long terms, which may explain the different dynamics for these bonds. Another interesting point of this work is that risk premiums seem to be variants both in time and in maturity.

4.3 Implicit inflation as a predictor of future inflation

The work of Vicente & Guillen (2013) and Caldeira & Furlani (2014) propose a methodology to test the predictive power of the implicit inflation on future inflation. Defining \(h(1)_t \) as the annual rate continuously compounded interest, we can define the cumulative inflation between period \(t \) and \(t + \tau \) as \(h(\tau)_t = \frac{1}{\tau} \sum_{j=t}^{j=t+\tau} h_j(1) \). We can test

\[h(1)_t \]

This measure is the mean market forecast, the median forecast of the market had worse results thus we use the mean.
whether the implied inflation has predictive power on inflation using a regression with the following functional form:

\[h(\tau)_t = c_0 + c_1 \pi^e_t(\tau) + \epsilon_{t+\tau} \] (23)

the equation 23 demonstrates that the term \(c_1 \) is significant, then the implied inflation provides some information about future inflation, and if \(c_0 = 0 \) and \(c_1 = 1 \) implicit inflation estimator is an unbiased future inflation. As [Vicente & Guillen (2013)](23) first estimate the equation 23 by Method of Ordinary Least Squares (OLS). Later, to avoid possible endogeneity problems we will make an estimation by Two-Stage Least Squares (TSLS) with the first lag of implied inflation as a tool and an estimation by Generalized Method of Moments (GMM) with the first three lags as instruments. The authors propose an estimation by TSLS and GMM for future inflation should be influenced by inflation expectations as well as expectations for inflation are contaminated performed, generating endogeneity. With this, we test the significance of \(c_1 \) and if \(c_0 = 0 \) e \(c_1 = 1 \) through a Wald test. Another point worth noting is that [Vicente & Guillen (2013)](23) said their estimates are correct only under the assumption that risk premium are constant over time, which does not seem to be true for the Brazilian case.

Table 6 – OLS of the model’s Implicit Inflation

<table>
<thead>
<tr>
<th>Maturity</th>
<th>3</th>
<th>6</th>
<th>9</th>
<th>12</th>
<th>24</th>
<th>36</th>
<th>48</th>
<th>60</th>
</tr>
</thead>
<tbody>
<tr>
<td>(c_0)</td>
<td>1.15</td>
<td>1.10</td>
<td>0.83</td>
<td>0.43</td>
<td>0.10</td>
<td>0.65</td>
<td>-0.53</td>
<td>0.40</td>
</tr>
<tr>
<td>(c_1)</td>
<td>-0.01</td>
<td>-0.01</td>
<td>0.01</td>
<td>0.03</td>
<td>0.05</td>
<td>0.02</td>
<td>0.09</td>
<td>0.04</td>
</tr>
<tr>
<td>(R^2)</td>
<td>56.2%</td>
<td>50.9%</td>
<td>29.3%</td>
<td>8.1%</td>
<td>-0.4%</td>
<td>34.2%</td>
<td>22.7%</td>
<td>21.6%</td>
</tr>
<tr>
<td>F-test</td>
<td>0.30</td>
<td>0.82</td>
<td>0.62</td>
<td>0.04</td>
<td>0.00</td>
<td>0.06</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

The values below the coefficients are the P-value of coefficients

Table 7 – TSLS of the model’s Implicit Inflation

<table>
<thead>
<tr>
<th>Maturity</th>
<th>3</th>
<th>6</th>
<th>9</th>
<th>12</th>
<th>24</th>
<th>36</th>
<th>48</th>
<th>60</th>
</tr>
</thead>
<tbody>
<tr>
<td>(c_0)</td>
<td>1.35</td>
<td>1.18</td>
<td>0.84</td>
<td>0.37</td>
<td>0.16</td>
<td>0.84</td>
<td>-0.72</td>
<td>0.50</td>
</tr>
<tr>
<td>(c_1)</td>
<td>-0.02</td>
<td>-0.01</td>
<td>0.01</td>
<td>0.03</td>
<td>0.05</td>
<td>0.01</td>
<td>0.10</td>
<td>0.03</td>
</tr>
<tr>
<td>(R^2)</td>
<td>56.3%</td>
<td>50.1%</td>
<td>27.1%</td>
<td>5.8%</td>
<td>-1.7%</td>
<td>34.8%</td>
<td>29.3%</td>
<td>21.2%</td>
</tr>
<tr>
<td>F-test</td>
<td>0.08</td>
<td>0.68</td>
<td>0.71</td>
<td>0.06</td>
<td>0.00</td>
<td>0.42</td>
<td>0.00</td>
<td>0.01</td>
</tr>
</tbody>
</table>

The values below the coefficients are the P-value of coefficients

Tables 6, 7 and 8 have the tests using the estimates proposed by [Vicente & Guillen (2013)](23). We can see that, in general, the tests are robust and show the same results. As for the BEI rates, the results are not robust, indicating different results depending on which
Table 8 – GMM of the model’s Implicit Inflation

<table>
<thead>
<tr>
<th>Maturity</th>
<th>3</th>
<th>6</th>
<th>9</th>
<th>12</th>
<th>24</th>
<th>36</th>
<th>48</th>
<th>60</th>
</tr>
</thead>
<tbody>
<tr>
<td>(c_0)</td>
<td>1.20</td>
<td>1.05</td>
<td>0.76</td>
<td>0.27</td>
<td>-0.02</td>
<td>0.70</td>
<td>-0.70</td>
<td>0.40</td>
</tr>
<tr>
<td>(c_1)</td>
<td>-0.01</td>
<td>0.00</td>
<td>0.00</td>
<td>0.17</td>
<td>0.93</td>
<td>0.00</td>
<td>0.00</td>
<td>0.04</td>
</tr>
<tr>
<td>(R^2)</td>
<td>55.2%</td>
<td>49.3%</td>
<td>25.9%</td>
<td>4.2%</td>
<td>-2.9%</td>
<td>33.1%</td>
<td>32.8%</td>
<td>20.5%</td>
</tr>
<tr>
<td>F-test</td>
<td>0.02</td>
<td>0.96</td>
<td>0.45</td>
<td>0.00</td>
<td>0.00</td>
<td>0.16</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

The values below the coefficients are the P-value of coefficients estimation method we are using. \cite{VicenteGuillem2013} point that the basic assumption of the proposed test for them is that risk premiums are constant in time, which for the Brazilian case doesn’t seem to be true. Estimates of test for BEI rates are present in Annex A.

The implied inflation seems to be an unbiased estimator for up to nine months, showing greater results than those found in the works of \cite{VicenteGuillem2013} and \cite{CaldeiraFurlani2014}. The results also corroborate that for the medium term (24-48 months) the titles do not seem to provide good information. The results for implicit inflation for 36 months indicate that it is an unbiased estimator of realized inflation. For the long term (60 months) implicit inflation seems to provide information explaining more than 20% of the variation in inflation. The results regarding the superiority of one of the measurements indicate that there are gains when we impose no-arbitrage restrictions on forecasts of inflation, as well as providing information on future inflation and should generate better outcomes for which the risk premium is too large.

5 Conclusions

The aim of this study was to use the nominal and real bond markets to estimate inflation from them. For this we use nominal bonds and notes National Treasury of type B. We use the methodology proposed by latent factors \cite{NelsonSiegel1987} in a dynamic manner, based on the work of \cite{ChristensenLopezRudebusch2010} estimate a free arbitrage model that uses four factors: 2 different for level 2 and factor common to the slope and curvature factors. With several criteria specification, we chose the most parsimonious model This model four factors, in its diagonal form, has a good fit for values of nominal and indexed bonds. The results presented here for both the implied inflation rates and the BEI rate show better forecasts for 6 and 12 months in advance compared to average of market forecasts presented in the Focus Bulletin.

The results of the proposed test by \cite{VicenteGuillem2013} show that imposing no-arbitrage restrictions increase the predictive power of the model. Furthermore, the test
seems to be inconsistent for BEI rates as it has for the hypothesis that the risk premiums are not variant in time (our model presented awards of time-varying risk). This test indicates, for shorter horizons the forecasts of the implicit inflation are unbiased estimators of inflation future for up to nine months horizons. As for medium-term and long-term horizons, the results are inconclusive, as already shown in other studies applied to the Brazilian market. This paper closes a gap in the literature of the use of government bonds for forecasting inflation in Brazil with the decomposition of BEI rate implicit in inflation and risk premiums with no-arbitrage restrictions for Brazilian market

Bibliography

ANNEX A – Tests for BEI rates
Table 9 – OLS for the BEI rates

<table>
<thead>
<tr>
<th>Maturity</th>
<th>3</th>
<th>6</th>
<th>9</th>
<th>12</th>
<th>24</th>
<th>36</th>
<th>48</th>
<th>60</th>
</tr>
</thead>
<tbody>
<tr>
<td>c_0</td>
<td>0.53</td>
<td>0.75</td>
<td>0.71</td>
<td>0.38</td>
<td>0.06</td>
<td>0.76</td>
<td>-0.44</td>
<td>0.41</td>
</tr>
<tr>
<td></td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.05</td>
<td>0.74</td>
<td>0.00</td>
<td>0.02</td>
<td>0.08</td>
</tr>
<tr>
<td>c_1</td>
<td>0.02</td>
<td>0.01</td>
<td>0.02</td>
<td>0.03</td>
<td>0.05</td>
<td>0.02</td>
<td>0.08</td>
<td>0.04</td>
</tr>
<tr>
<td></td>
<td>0.00</td>
<td>0.08</td>
<td>0.10</td>
<td>0.00</td>
<td>0.00</td>
<td>0.06</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>R^2</td>
<td>30.3%</td>
<td>41.0%</td>
<td>29.7%</td>
<td>8.3%</td>
<td>-1.1%</td>
<td>37.8%</td>
<td>12.0%</td>
<td>16.4%</td>
</tr>
<tr>
<td>F-test</td>
<td>0.00</td>
<td>0.17</td>
<td>0.26</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

The values below the coefficients are the P-value of coefficients.

Table 10 – TSLS for the BEI rates

<table>
<thead>
<tr>
<th>Maturity</th>
<th>3</th>
<th>6</th>
<th>9</th>
<th>12</th>
<th>24</th>
<th>36</th>
<th>48</th>
<th>60</th>
</tr>
</thead>
<tbody>
<tr>
<td>c_0</td>
<td>0.73</td>
<td>0.83</td>
<td>0.71</td>
<td>0.31</td>
<td>0.09</td>
<td>0.92</td>
<td>-0.61</td>
<td>0.51</td>
</tr>
<tr>
<td></td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.14</td>
<td>0.69</td>
<td>0.00</td>
<td>0.00</td>
<td>0.05</td>
</tr>
<tr>
<td>c_1</td>
<td>0.01</td>
<td>0.01</td>
<td>0.02</td>
<td>0.04</td>
<td>0.05</td>
<td>0.01</td>
<td>0.09</td>
<td>0.04</td>
</tr>
<tr>
<td></td>
<td>0.04</td>
<td>0.53</td>
<td>0.13</td>
<td>0.00</td>
<td>0.00</td>
<td>0.37</td>
<td>0.00</td>
<td>0.01</td>
</tr>
<tr>
<td>R^2</td>
<td>28.5%</td>
<td>39.6%</td>
<td>29.5%</td>
<td>8.1%</td>
<td>-1.3%</td>
<td>37.0%</td>
<td>13.4%</td>
<td>15.0%</td>
</tr>
<tr>
<td>F-test</td>
<td>0.04</td>
<td>0.61</td>
<td>0.31</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

The values below the coefficients are the P-value of coefficients.

Table 11 – GMM for the BEI rates

<table>
<thead>
<tr>
<th>Maturity</th>
<th>3</th>
<th>6</th>
<th>9</th>
<th>12</th>
<th>24</th>
<th>36</th>
<th>48</th>
<th>60</th>
</tr>
</thead>
<tbody>
<tr>
<td>c_0</td>
<td>0.56</td>
<td>0.63</td>
<td>0.66</td>
<td>0.34</td>
<td>-0.02</td>
<td>0.84</td>
<td>-0.47</td>
<td>0.42</td>
</tr>
<tr>
<td></td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.07</td>
<td>0.90</td>
<td>0.00</td>
<td>0.01</td>
<td>0.06</td>
</tr>
<tr>
<td>c_1</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.04</td>
<td>0.06</td>
<td>0.01</td>
<td>0.08</td>
<td>0.04</td>
</tr>
<tr>
<td></td>
<td>0.00</td>
<td>0.01</td>
<td>0.04</td>
<td>0.00</td>
<td>0.00</td>
<td>0.20</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>R^2</td>
<td>30.3%</td>
<td>37.9%</td>
<td>29.7%</td>
<td>8.1%</td>
<td>-3.1%</td>
<td>36.1%</td>
<td>18.2%</td>
<td>15.5%</td>
</tr>
<tr>
<td>F-test</td>
<td>0.00</td>
<td>0.04</td>
<td>0.09</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

The values below the coefficients are the P-value of coefficients.