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GENERALIZED EMPIRICAL LIKELIHOOD/MINIMUM CONTRASTESTIMATION OF STOCHASTIC DIFFERENTIAL EQUATIONSMÁRCIO POLETTI LAURINILUIZ KOODI HOTTAAbstrat. In this study we approah the semiparametri estimation of Stohasti Dif-ferential Equations employing methods of generalized empirial likelihood and generalizedminimum ontrast. The results obtained demonstrate that the estimators proposed, parti-ularly, the Exponentially Tilted Empirial Likelihood (Shennah (2007)) estimator, obtainbetter results than those of the Generalized Methods of Moment generally used in the es-timation of stohasti di�erential equations. These results are derived from the robustnessproperties of this method in the presene of problems of inorret spei�ation, whih, in theontext of the estimation of stohasti di�erential equations, ours by using the proess' ap-proximate disretization in the onstrution of moment onditions. The analyses are arriedout by means of Monte Carlo experiments for unonditional and onditional formulations ofmoment onditions.Key Words: Stohasti Di�erential Equations, Empirial Likelihood, Generalized MinimumContrast.
1. IntrodutionThe use of stohasti proesses in ontinuous time in the modeling and priing of �nanialinstruments is one of the basis of the modern theory of Finane, and its origin an be traedbak to Bahelier (1900)'s seminal study. The use of stohasti proesses in ontinuous time isjusti�ed by the mathematial onveniene in relation to the use of proesses in disrete timeand the possibility of employing the mathematial theory developed for the general lass ofproesses known as ontinuous semi-martingales, making it possible to perform an appliationof the whole theory of priing by no-arbitrage (Harrison and Kreps (1979), Harrison andPliska (1981) and Delbaen and Shahermayer (1994)) in this ontext. The basi objets of1



GEL/GMC ESTIMATION OF STOCHASTIC DIFFERENTIAL EQUATIONS 2the modeling of stohasti proesses in ontinuous time are the so-alled Stohasti Di�erentialEquations, whih are objets represented in the general form:(1.1) dXt = µ(t,Xt) + σ(t,Xt)dWt,where µ(t,Xt) represents the deterministi part of the proess (instantaneous drift), σ(t,Xt)represents the stohasti omponent (volatility) of the proess, and Wt is the so-alled Wienerproess or Brownian Motion. This representation is useful beause it makes it possible tode�ne the evolution of the proess trajetories Xt by means of a representation given by astohasti integration (e.g Rogers and Williams (2000), Karatzas and Shreve (1987), Kloedenand Platen (1992)):(1.2) Xt = X0 +

∫ t

t0

µ(t,Xt)dt+

∫ t

t0

σ(t,Xt)dWt.Di�erent spei�ations of the drift µ(t,Xt) and volatility σ(t,Xt) proesses in the stohastidi�erential equation give rise to proesses with distint properties. These properties enablethe representation of a wide lass of proesses used in �nane. Fousing on the modeling ofshort-term interest rates, a series of alternative spei�ations for the modeling of short-terminterest rates have been employed. Table 1 presents some formulations used in the literature,omprising the models of Merton (1973), Vasiek (1977), Cox et al. (1985), Dothan (1978),Blak and Sholes (1973), Brennan and Shwartz (1980), Cox et al. (1980) and Cox (1975).Notably, on its last line is de�ned the model alled Generalized Cox-Ingersoll-Ross (CIR),ontaining all the previous models as partiular ases, as demonstrated in Chan et al. (1992),whih inludes a general disussion on the properties of these models.Parameter estimation in stohasti di�erential equations is a well developed theme in theeonometri literature1, and there is a very wide range of tehniques available. This rangeof tehniques is related to the di�ulties inherent to the estimation of stohasti di�erential1For a review of the literature on stohasti di�erential equations see Gourieroux and Monfort (1996),Prakasa Rao (1999), Bishwal (2007) and Zivot and Wang (2006)



GEL/GMC ESTIMATION OF STOCHASTIC DIFFERENTIAL EQUATIONS 3Merton (1973) dXt = αdt+ σdWVasiek (1977) dXt = (α+ βXt)dt+ σdWCIR SR (1985) dXt = (α+ βXt)dt+ σX
1/2
t dWDothan (1978) dXt = σXtdWGBM (1973) dXt = βXtdt+ σXtdWBrennan-Shwartz (1980) dXt = (α+ βXt)dt+ σXtdWCIR VR (1980) dXt = σX

3/2
t dWCEV (1975) dXt = βdt+ σdWGeneralized CIR dXt = (α+ βXt)dt+ σXγ

t dWTable 1. Models for short-term interest rates.
equations, partiularly in the non-existene of analytial solutions for the stohasti integrationin general ases and the problem of using disretely observed data in the estimation of aproess formulated in ontinuous time. As examples of estimation methods in this ontext,we have maximum likelihood, generalized methods of moments (GMM), methods of simulatedmoments, Martingale estimating equations, Markov hain Monte Carlo and indiret inferene,and non-parametri methods. In priniple, the most reommended form of estimation onsistsin employing the likelihood funtion, beause, under the regularity onditions, the maximumlikelihood estimators are onsistent, e�ient and asymptotially normal. However, in theontext of the estimation of stohasti di�erential equations, the non-existene of generalsolutions is a general di�ulty found in the use of methods based on the likelihood of theproess, whih is formulated by employing the transition density resulting from the solutionof the stohasti di�erential equation.In the absene of analytial solutions, it is neessary to use approximations in the onstru-tion of the likelihood funtion, suh as the use of quasi-maximum likelihood methods, whihgenerates estimators with minimum mean square error, or the use of simulated maximum like-lihood, whih uses simulated trajetories by Euler or Milstein disretizations in the likelihoodevaluation (Pedersen (1995)), or else approximations using Hermite expansions obtained byAit-Sahalia (2002). Note that, given the employment of approximations in the evaluation ofthe likelihood funtion, the optimality properties of this estimator may not remain, and thusother estimators ould beome ompetitive.



GEL/GMC ESTIMATION OF STOCHASTIC DIFFERENTIAL EQUATIONS 4Estimators using moment onditions are also often employed in the estimation of stohastidi�erential equations. The estimation using the (GMM) by Hansen (1982), employing a simpledisretization of the proess, may be the form most widely employed (e.g. Chan et al. (1992)).Although the generalized method of moments is haraterized by properties of onsistenyand asymptoti e�ieny, its properties in �nite samples and in the presene of spei�ationproblems may not be optimal. In order to takle these problems we disuss the use of twolasses of estimators in the estimation of stohasti di�erential equations employing disretedata - estimators of generalized empirial likelihood and estimators of generalized minimumontrast, omparing their performane with that of the estimators based on estimation by theGeneralized Method of Moments. These estimators are semi-parametri in the sense that theparametri form of the stohasti di�erential equation is used through moment onditions, butthe non-observed density of the proess is evaluated in a non-parametri form. We analyzethe properties of these estimators using unonditional and onditional moments onditions.The estimators presented (generalized empirial likelihood, ontinuous updating empiriallikelihood, exponential tilting and exponentially tilted empirial likelihood) possess the sameproperties of onsisteny and �rst-order asymptoti e�ieny (e.g. Smith (2001), Shennah(2007)) as the ompared GMM estimators (two-stage GMM, iterative GMM, ontinuous up-dating GMM). However, theoretial results demonstrate that these estimators may have su-perior properties in terms of bias in �nite samples, and asymptoti properties of higher order(e.g. Kitamura (2006)). Furthermore, these estimators are asymptotially e�ient in the lassof semi-parametri estimators (in Bikel et al. (1993)'s sense), and have optimal properties interms of hypotheses tests: minimax optimality, optimality in the sense of large deviations, andthese tests are uniformly more powerful in the generalized Neyman-Person sense. The lass ofestimators of generalized minimum ontrast (exponential tilting and exponentially tilted em-pirial likelihood) has harateristis of robustness in the presene of spei�ation problems.These harateristis of robustness of the estimators based on generalized minimum ontrastare of the utmost importane in the estimation of stohasti di�erential equations, and be-ause of the non-existene of exat disretizations, all the estimators of ontinuous proessesemploying disretely observed data are haraterized by a problem of inorret spei�ation.



GEL/GMC ESTIMATION OF STOCHASTIC DIFFERENTIAL EQUATIONS 5This study disusses the use of these methods in the estimation of stohasti di�erentialequations, and the results obtained demonstrate that these estimators obtain superior resultswhen ompared with the tehniques generally employed of generalized methods of moments.One result of partiular interest is that the estimator of exponentially tilted empirial likeli-hood (Shennah (2007)) obtains results that are muh superior in terms of �nite sample bias,a result derived from the properties of this model's robustness in the presene of inorretspei�ation (e.g. Smith (2001), Shennah (2007), Anatolyev and Gospodinov (2011)).Another important ontribution of this paper is to show that the use of methods based ongeneralized empirial likelihood/ minimum ontrast gives a good performane in �nite samplesthrough the use of unonditional moments derived from disretizations, proedure that anusually be derived for any ontinuous time stohasti proess. The performane of estimatorsbased on unonditional moments derived from Euler disretizations is omparable to resultsobtained using onditional moments, whih an only be obtained expliitly for a very restritedlass of models. These results indiate the exellent properties of the estimators proposed inthis artile.This artile is strutured as follows: setion 2 presents a brief review of the estimation ofstohasti di�erential equations employing the GMM. Setion 3 presents generalized empiriallikelihood and generalized minimum ontrast based estimators, disussing their properties,similarities and potential advantages in the estimation of stohasti di�erential equations. Aseries of Monte Carlo's experiments is performed in setion 4 for the estimation based on theunonditional moments and in setion 5 for the estimation based on onditional moments, aim-ing at stressing some properties of the estimators disussed in this study. The �nal onlusionsare in setion 6, showing onisely that the estimators proposed, whih are unpreedented inthe ontext of estimation of stohasti di�erential equations, obtain results that are superior tothe tehniques of the Generalized Methods of Moments generally employed in the estimationof stohasti di�erential equations.



GEL/GMC ESTIMATION OF STOCHASTIC DIFFERENTIAL EQUATIONS 62. Estimation by the Generalized Method of MomentsAs the tehnique of the GMM is widely employed in the eonometri literature for theestimation of stohasti di�erential equations, and as it also has deep onnetions with theestimation methods of Maximum empirial likelihood and generalized minimum ontrast, wewill start by reviewing this methodology, giving speial attention to the moment onditionsemployed in the estimation.The estimation by the Generalized Method of Moments was in-trodued by Hansen (1982). The method is based on population moments onditions:(2.1) E[g(θ0,Xt)] = 0,where θ0 is a vetor of true values of the parameters. The analogous sample momentsonditions are de�ned as:(2.2) g (θ) =
1

T

T∑

t=1

g(θ, xt).GMM estimators are de�ned as solutions to the system:(2.3) θ̂ = argθ
1

T

T∑

t=1

g(θ, xt) = 0.Note that, exept in the ase of the number of parameters being equal to the number ofmoment onditions (exatly identi�ed system), the problem desribed in 2.3 is not identi�edwhen the number of onditions is less than the number of parameters, or in general there isno solution when the number of onditions are greater than the number of parameters. Inorder to obtain a single solution it is used a number of moment onditions larger or equal thenumber of parameters and de�ne the following riterion funtion:(2.4) J(θ) = g (θ)′ Wg (θ)



GEL/GMC ESTIMATION OF STOCHASTIC DIFFERENTIAL EQUATIONS 7and the minimization of this funtion de�nes the optimum solution of the problem, where
W is a positive de�nite weighting matrix. Hansen (1982) demonstrates that the e�ientasymptoti solution of the GMM estimation is obtained when this matrix is given by:(2.5) W ∗ =

{
lim
t→∞

V ar
(√

Tg (θ)
)}−1

= Ω(θ)−1and thus the optimal weight is obtained by employing the inverse of the sample variane-ovariane matrix. This matrix is usually estimated employing the lass of HAC estimatorsof Newey and West (1987) given by:(2.6) Ω̂ =

T−1∑

s=−(T−1)

kh(s)Γ̂s(θ
∗),where k is a kernel funtion dependent on the hoie of a bandwidth h, whih an be hosenusing the Newey and West (1987)'s or Andrews (1991)'s proedures:(2.7) Γ̂s(θ

∗) =
1

T

T∑

t=1

g(θ∗, xt)g(θ
∗, xt+s)

′,The e�ient estimator of the GMM is then obtained as a solution of the problem:(2.8) θ̂ = argmin
θ

g (θ)′ Ω̂ (θ∗) g (θ) .There are several forms of performing the implementation of the GMM estimator. Theinitial form proposed by Hansen (1982) is the estimator known as two-stage GMM. Thisestimator is obtained by performing a �rst stage by obtaining an initial estimator θ̂∗ =

argmin g (θ)′ Ωg (θ), where Ω is an initial weight matrix, normally an identity matrix. Fromthis �rst stage, a HAC matrix Ω̂ (θ∗) is alulated in funtion of this initial estimation, andthe �nal estimation of the GMM estimator is obtained as θ̂ = argmin g (θ)′ Ω̂ (θ∗) g (θ) withthe HAC matrix obtained in the �rst stage.



GEL/GMC ESTIMATION OF STOCHASTIC DIFFERENTIAL EQUATIONS 8Note that, in this ase, there is a dependene on the results of the seond stage with theinitial estimation on the �rst stage, and thus this proedure an reate a �rst-order biasimpairing the performane of the estimator in �nite samples (Hansen et al. (1996)). In orderto solve this problem, two alternative proedures are proposed. The �rst proedure is knownas Iterative GMM, whih is a modi�ation of the two-stage proedure. In this proedure, theestimation of the �rst stage is reinitialized with the result of the seond stage estimation, andthis iteration ontinues up to when a variation in the vetor of parameters beomes smallerthan a hosen epsilon.Another possible estimator is known as GMM with ontinuous updating (Hansen et al.(1996)). In this ase the estimation of the parameter θ̂ is not performed in stages, but itis performed simultaneously by employing an algorithm of numerial optimization. Startingfrom an initial vetor θ0 (generally hosen employing the two-stage GMM method) the estima-tion is performed by θ̂ = argmin g (θ)′ Ω̂ (θ∗) g (θ) , but now θ and Ω̂ (θ∗) are simultaneouslydetermined. This proedure obtains the same �rst-order properties as the Iterative GMM esti-mator, but aording to Hansen et al. (1996), it has better properties in terms of bias in �nitesamples. Aording to Newey and Smith (2004) and Anatolyev (2005), the three methods areasymptotially equivalent, but the seond-order bias of the ontinuous updating estimator issmaller, and the iterations inrease the estimator's e�ieny. However, the numerial proe-dure an be subjet to multiple modes in the objetive funtion, whih renders this estimatornumerially unstable.In order to perform the estimation of stohasti di�erential equations by employing theGMM, it is neessary to formulate the moment onditions in terms of some disretized formof the model. The �rst approah employed is by means of the simple disretization adoptedin Chan et al. (1992) for the Generalized CIR model (Table 1) given by:(2.9) Xt+1 −Xt = α0 + β0Xt + εt+1



GEL/GMC ESTIMATION OF STOCHASTIC DIFFERENTIAL EQUATIONS 9with the onditions: E(εt+1) = 0 and E(ε2t+1) = σ2
0X

2γ
t . In this ase, we an formulatethe moment onditions neessary for the estimation of parameters (α, β, γ, σ2)), by de�ning

εt+1= Xt+1 −Xt − α0 − β0Xt , and de�ning four moment onditions in this form:
(2.10) g(θ) =




εt+1

εt+1Xt

ε2t+1 − σ2
0X

2γ
t

(ε2t+1 − σ2
0X

2γ
t )Xt




.

and applying the GMM estimation de�ned by equation 2.8. Moment onditions for theother submodels of the Generalized CIR family an be obtained by imposing the neessaryrestritions, aording to Table I in Chan et al. (1992). Note that this simple disretization isnot onsistent - the disretization does not onverge to the true solution of the proess, sineit ignores the time interval between observations. A simple form of obtaining a onsistentdisretization for this proess is to employ a �rst-order Euler disretization, whih de�nesmoment onditions given by a residual vetor in this form: εt+△t= rt+△− rt− (α0 +β0rt)△t,and thus onstruting the vetor of moment onditions as:
(2.11) g(θ) =




εt+△t

εt+△tXt

ε2t+△t − σ2
0X

2γ
t △t

(ε2t+△t − σ2
0X

2γ
t △t)Xt




.

This is the form employed in this study. Note that the use of disretization always rep-resents a spei�ation problem in the inferene proedure, sine, even employing onsistentdisretizations, the bias term aused by the disretization employed only tends to zero when
△t → 0. Note that the time interval △t employed in the proess of disretization depends onthe frequeny of data observation, and thus it is not under the researher's ontrol. Therefore,there are two soures of bias problems in the estimation of stohasti di�erential equations:the �rst form derived from the use of Generalized Methods of Moments estimators, and an



GEL/GMC ESTIMATION OF STOCHASTIC DIFFERENTIAL EQUATIONS 10additional form generated by the inorret spei�ation given by the use of a non-exat dis-retization of the proess. Note that in Chan et al. (1992)'s original study, the estimationemploys a simple disretization of the model rather than the Euler disretization, and thisrepresents a bias inrease in the estimation due to a spei�ation with a larger approximationerror. Consequenes of this problem an be seen in Prakasa Rao (1999), and a supplementarydisussion of this problem is presented in setion 4, whih demonstrates that this disretizationproblem leads to a problem of inorret spei�ation in the estimation of stohasti di�erentialequations.3. Generalized Empirial Likelihood and generalized minimum ontrastEstimatorsIn the GMM there is a trade-o� between weaker neessity of assumptions for its use andthe e�ieny of the method in �nite samples. Conditions of regularity for estimators ofthe GMM (Hansen (1982), Newey and MFadden (1994)) involve only onditions for theasymptoti validity of the moment onditions and do not assume stronger onditions suhas the knowledge of the proess distribution, but, in �nite samples, the properties of thisestimator is not optimal.The opposite situation would be the estimation by the maximum likelihood method, whihemploys not only the onditional moments of the proess but all the information in the ondi-tional densities. If the proess is orretly spei�ed and meets the regularity onditions, thenit is a better asymptotially Gaussian estimator, and it also reahes optimality in measuressuh as Badahur e�ieny (Kitamura (2006), DasGupta (2008)). Nevertheless, employing themaximum likelihood in the estimation of stohasti di�erential equations is di�ult by thenon-existene of analytial forms for the solution of stohasti di�erential equations, and thusit is not possible to employ parametri forms for the maximum likelihood estimation.An alternative form, not yet explored in the literature of inferene in ontinuous time pro-esses, is the use of a form of non-parametri maximum likelihood estimation known as empiri-al likelihood (EL)2. Aording to Kitamura (2006), assuming a sequene of IID data {xi}Ti=1 of2A detailed review of the generalized empirial likelihood estimators an be found in Anatolyev and Gospodinov(2011).



GEL/GMC ESTIMATION OF STOCHASTIC DIFFERENTIAL EQUATIONS 11an unknown density, and de�ning△ as the simplex {(p1, . . . , pT ) :∑T
t=1 pt = 1, 0 ≤ pt ≤ 1, t = 1, . . . T

},the non-parametri log-likelihood funtion is de�ned as:(3.1) ℓNP (p1, . . . , pT ) =

T∑

t=1

log pt, (p1, . . . , pt) ∈ △whih an be interpreted as a log-likelihood of a multinomial distribution with supportgiven by the sample observations {xt}ni=1, even if the density xt is not a multinomial.A notable advanement in the literature of empirial likelihood was ahieved by Owen(1991), who established onnetions between the non-parametri likelihood and the estimationemploying moment onditions, whih is also used in the estimation by the GMM, as shownby Qin and Lawless (1994). Assuming the ondition of moments in the form:(3.2) E [g(θ0,Xt)] =

∫
g(θ0,X)dµ = 0, θ0 ∈ Θ ⊂ R

k,it is possible to transform this estimation problem using onditions of moments in a non-parametri likelihood problem employing impliit probabilities pi, and thus the log-likelihoodfuntion to be maximized beomes:
ℓNP (p1, . . . , pT ) =

T∑

t=1

log pt, s.t.

T∑

t=1

g(θ, xt)pt = 0The estimator that maximizes this expression is the maximum empirial likelihood estimate.The impliit probabilities are related to the validity of the moment onditions. These impliitprobabilities give more weight to the observations where the moment onditions are loser tozero. Note the similarity with the estimation by the GMM, whih is a simpli�ed form thatassumes that all weights are equal, i.e., pt = 1/n.The use of empirial likelihood is partiularly important in the estimation of stohastidi�erential equations beause, exept in a few partiular ases, there are no exat solutionsfor the stohasti di�erential equations, and thus it is not possible to onstrut analytially thetransition densities of the proess, whih makes it impossible to onstrut an exat likelihood



GEL/GMC ESTIMATION OF STOCHASTIC DIFFERENTIAL EQUATIONS 12funtion. Empirial likelihood method allow us to assess the likelihood of the proess in anon-parametri form, and thus they do not depend on the existene of analytial solutions forthe stohasti di�erential equations. This non-parametri evaluation of the likelihood funtionis e�ient in the semi-parametri sense (e.g. Bikel et al. (1993)), and, at the same time, itemploys the parametri spei�ation given by the stohasti di�erential equation to onstrutmoment onditions.A di�erene found with the GMM is that, in the methodology of generalized empiriallikelihood, the moment ondition an be a proess weakly dependent and heteroskedasti. Inorder to takle this situation, Kitamura (1997) and Kitamura and Stutzer (1997) proposesreplaing g(θ, xt) for a smoothed version de�ned as:(3.3) gw(θ, xt) =
m∑

s=−m

w(s)g(θ, xt−s),where w(s) are weights obtained by a kernel funtion adding one, in the spirit of a HACestimator (Andrews (1991)) . This modi�ation makes it possible to obtain the same onditionsof �rst-order asymptoti e�ieny existing in the GMM methods. In this way the estimategiven by the moment onditions is given by:(3.4) θ̂ = argθ

T∑

t=1

ptg
w(θ, xt) = 0.The use of smoothing is espeially important in the estimation of disretized models, sinethe Euler disretization for a disretely observed proess involves independent proesses onlywhen the interval δ in the disretization onverges to zero. For disretely observed data, ingeneral the disretization interval is de�ned by the frequeny of the observed sample. Thus, ingeneral, the proess of the observed data with a �xed disretization is dependent, justifying theuse of smoothing. Another important property is that the use of smoothing an improve theproperties in �nite samples even for IID data, as disussed in Anatolyev (2005) and Anatolyevand Gospodinov (2011).



GEL/GMC ESTIMATION OF STOCHASTIC DIFFERENTIAL EQUATIONS 13An interpretation of equation 3.4 in relation to the GMM estimator is that, while in over-identi�ed models estimated by GMM the moment onditions are not exatly equal to zero, inthe estimators de�ned by this equation the moment onditions are exatly equal to zero byweighting with the use of the empirial probabilities pt. Note that, in models exatly identi�ed,all the estimators proposed obtain similar results, beause in all these estimators the momentonditions are always valid. In over-identi�ed models with valid moment onditions, all theseestimators produe the same asymptoti variane.An alternative interpretation of the empirial likelihood estimator an be obtained, suh asthat of a partiular ase of the generalized minimum ontrast (GMC) estimator (e.g. Bikelet al. (1993)), similar to the interpretation of the GMM estimator as an estimator of minimum
χ2, or the interpretation of estimators of quasi-maximum likelihood as estimators of minimumontrast. De�ning a general divergene funtion between two measures of probability P and
Q as follows:(3.5) D(P,Q) =

∫
φ

(
dP

dQ

)
dQ,where φ is a onvex funtion. De�ne M as the set of all the probability measures in R

p and(3.6) P (θ) =

{
P ∈ M :

∫
g(θ, x)dP = 0

}and P the statisti model of all the probability measures ompatible with 3.6. The problemof minimum ontrast optimization is given by(3.7) inf
θ∈Θ

inf
P∈P(θ)

D(P, µ)where µ denote the dominating measure in this model.Thus in a orretly spei�ed model, this disrepany must be minimal in θ = θ0. In thease of empirial likelihood estimators, the point estimation θ̂ is the one that minimizes thedisrepany between p̂t and uniform weights.



GEL/GMC ESTIMATION OF STOCHASTIC DIFFERENTIAL EQUATIONS 14Some measures of divergene employed in the literature are the Kullbak-Leibler divergeneand the entropy measure. This problem of minimum ontrast an be formulated in the formof moment onditions E(g(θ0,Xt)) = 0, by employing a modi�ed ondition in the form of Eq.3.4 and the minimum ontrast estimator is obtained with the use of some ontrast funtion
hT :(3.8) θ̂n = argmin

θ,pt

T∑

t=1

hT (pt).An important result is that an adequate hoie of the disrepany funtion an lead toa uni�ed representation of empirial maximum likelihood and minimum ontrast estimators.This representation an be obtained when the funtion hT (pt) belongs to the Cressie-Readfamily of disrepanies given by:(3.9) hT (pt) =
[γ(γ + 1)]−1(Tpt)

γ+1 − 1]

Tand with restritions on the de�nition of the Cressie-Read disrepany, there are partiularases of several lasses of estimators. The empirial likelihood is obtained with the restrition
γ → 0 in the disrepany funtion hT (pt); the generalized minimum ontrast method, knownas exponential tilting (ET) of Kitamura and Stutzer (1997) and Imbens et al. (1998), is ob-tained by γ → −1 and the Continuous Updating estimator employing the empirial likelihoodformulation is obtained by γ → 1.Smith (2001) demonstrated that it is possible to de�ne another estimator that also inludesthese estimators as partiular ases. The method of generalized empirial likelihood (GEL) of(Smith (2001)) is obtained as a solution for the following saddle point problem:(3.10) θ̂n = argmin

θ

[
max
λ

1

T

T∑

t=1

ρ
(
λ′gw(θ, xt)

)
]
,where λ de�nes Lagrange multipliers assoiated to restrition:



GEL/GMC ESTIMATION OF STOCHASTIC DIFFERENTIAL EQUATIONS 15(3.11) T∑

t=1

ptg
w(θ, xt) = 0.Estimators are obtained solving the previous equation with the �rst-order ondition:(3.12) T∑

t=1

ptλ
′

(
∂gw(θ, xt)

∂θ

)
= 0,where:(3.13) pt =

1

T
ρ′
(
λ′gw(θ, xt)

)
.This generalized likelihood estimator inludes the empirial likelihood estimator, assumingthe same onditions on γ of the Cressie-Read divergene funtion, and modifying funtions hand ρ. The empirial likelihood estimator is obtained with h(p) = −ln np and ρ(ξ) = ln(1−ξ),the estimator of exponential tilting with h(p) = np ln np and ρ(ξ) = −exp(ξ), the estimator ofontinuous updating with h(p) = (np)2 and ρ(ξ) = −(1+ξ)2/23. The solution an be obtainedby numerial optimization or via quasi-Newton iterative methods, and the solution an beformulated in a problem of a smaller dimension by means of a dual formulation (Kitamura(2006)), whih is the method used in this study.An additional lass of estimators an be obtained by ombining the empirial likelihood es-timator and the exponential tilting estimator, generating the estimator known as exponentiallytilted empirial likelihood (ETEL) proposed by Shennah (2007). This estimator is de�nedas:(3.14) θ̂ = argmin

θ

(
T−1

T∑

t=1

h̃(p̂t(θ))

)
,where p̂i(θ) is the solution of:3See Table 1 in Smith (2001) for further details



GEL/GMC ESTIMATION OF STOCHASTIC DIFFERENTIAL EQUATIONS 16(3.15) min
{pt}

T
t=1

T−1
T∑

t=1

h(pt)subjet to ∑T
t=1 ptg(θ, xt) = 0 and ∑T

t=1 pt = 1, where h̃(pt) = −ln(Tpt) and h(pt) =

Tptln(Tpt).Note that the ETEL (exponentially tilted empirial likelihood) estimator employs the ex-ponential tilting method to �nd probabilities ŵi(θ) and the empirial likelihood method toestimate the parameter vetor θ̂. These probabilities are related to multipliers λ through therelation:(3.16) p̂t(θ) =

(
λ̂(θ)′g(θ, xt)

)

∑T
i=1

(
λ̂(θ)′g(θ, xi)

) .An important property of the ETEL lass of estimators is their behavior in the presene ofinorret spei�ation. Imbens et al. (1998) point out that the empirial likelihood estimatoran have inadequate behavior in the presene of inorret spei�ation, due to the presene ofa singularity in its in�uene funtion; and theorem 1 in Smith (2001) demonstrates that theasymptoti properties of the empirial likelihood estimator an be severely degraded in thepresene of minimum spei�ation problems. This e�et also a�ets the estimations of impliitprobabilities p̂t, beause, in the presene of spei�ation problems, the impliit probabilitiesin likelihood problems tend to onentrate in the extreme observations, in opposition to whatis expeted from a robust estimator.The result obtained by Smith (2001) is that, in the lass of minimum disrepany estimators,only the exponential tilting estimator has adequate behavior in the presene of spei�ationproblems beause its in�uene funtion does not present singularities. As the ETEL estimatoris a ombination of empirial likelihood estimators and of the exponential tilting estimator,it maintains the harateristis of asymptoti e�ieny and minimum bias of estimator EL,and, additionally, it is robust in the presene of spei�ation problems, due to the use ofthe exponential tilting estimator to estimate the impliit probabilities, as shown in theorems



GEL/GMC ESTIMATION OF STOCHASTIC DIFFERENTIAL EQUATIONS 178-10 in Smith (2001), indiating that this estimator is √n onsistent even in the presene ofspei�ation problems.However, the interpretation of the results of the ETEL estimator should be literally in-terpreted as an estimation based on pseudo-true values, and in this ase the onvergeneproperties in the misspei�ed models refer to normal rates of onvergene for the pseudo-truevalue that minimizes the (Kullbak-Leibler) distane between the true onditional distribu-tion of the generating proess and a onditional distribution in funtion of these pseudo-truevalues, e.g. Gourieroux and Monfort (1995).The usual interpretation of robustness properties for moment onditions estimators whenthe data are generated by a perturbed version in a in�nitesimal neighborhood of the truemodel an be found in Kitamura et al. (2009) for IID data and Evdokimov et al. (2009) forweakly dependent data, and are based on the use of Hellinger distane in the onstrution ofontrast funtion 3.5. The use of Hellinger distane in estimation of Stohasti Di�erentialEquations was already explored in Giet and Lubrano (2008), and properties of the Hellingerdistane estimator formulated as a generalized minimum ontrast to the estimation stohastidi�erential equations is a possibility to be explored.We an now sum up some ommon properties of the estimators disussed in this study. The�rst property is that all the estimators presented (two-stage GMM, Iterative GMM, ontin-uous updating GMM, generalized empirial likelihood, exponential tilting and exponentiallytilted empirial likelihood) have the same properties of onsisteny and �rst-order asymptotie�ieny (e.g. Smith (2001), Shennah (2007)), they are e�ient in the semi-parametrisense of Bikel et al. (1993), in the validity of spei�ed moment onditions. All the estimatorshave the same asymptoti variane, but the superior results in terms of bias and asymptotiproperties of higher order are valid for the estimators based on generalized empirial likeli-hood, exponential tilting and exponentially tilted empirial likelihood (e.g. Kitamura (2006)).The lass of estimators based on empirial likelihood also presents optimal properties in termof hypotheses tests: these tests are optimum in the minimax and large deviation riteria andare uniformly more powerful in the generalized sense of Neyman-Person, as demonstrated inKitamura (2006).



GEL/GMC ESTIMATION OF STOCHASTIC DIFFERENTIAL EQUATIONS 18However, the performane in �nite samples an be rather di�erent. The two-stage GMM es-timator an be severely biased in the sizes of the sample employed in eonomis and �nane,and ontinuous updating estimators are numerially unstable due to the existene of multiplemodes in the objetive funtion, for example, Hansen et al. (1996)). Newey and Smith (2004)demonstrate that the empirial likelihood estimator must have a bias in �nite samples smallerthan the bias of estimators of the exponential tilting and ontinuous updating lasses. In em-pirial likelihood and exponential tilting estimators, the bias does not grow with the numberof moment onditions, as happens with the GMM estimator. Newey and Smith (2004) alsodemonstrate that estimators based on GEL have good properties in terms of seond-orderbias. Another interesting property is that estimators based on GMC and GEL are invariantto linear transformation in the moment onditions vetor, whih does not our with the two-stage GMM estimator. The �nite sample properties of these estimators in in the estimationof stohasti di�erential equations are explored below.4. Monte Carlo Evidene - Unonditional MomentsAs all these methods are �rst order and asymptotially equivalent, to perform an analysisof the �nite sample properties of these estimators, we performed a Monte Carlo analysisevaluating several properties of these estimators, partiularly the bias, mean squared errorand mean absolute error, aompanied by a disussion about their validity in the presene ofinorret spei�ation in the ontext of estimation of stohasti di�erential equations.The Monte Carlo proedure onsists in simulating Generalized CIR models, Vasiek andCIR SR4 models, performing the estimation with the proposed estimation methods usingthe unonditional moment onditions de�ned in setion 2, and, based on these estimations,evaluating the bias, mean square error (MSE) and the mean absolute error (MAE) in relationto eah parameter estimated. Figures 4.1, 4.2, 4.3 and 4.4 show MSE and MAE sequentiallyfor eah parameter and eah method, for a more easy visualization of results.4These experiments were performed for the other models as well and produe similar results, but are notpresented here for reasons of spae.



GEL/GMC ESTIMATION OF STOCHASTIC DIFFERENTIAL EQUATIONS 19The simulation proedure employed for the Generalized CIR proess employs a Milsteindisretization (e.g. Milstein (1974), Kloeden and Platen (1992)) to generate proess traje-tories, sine in this proess there is no exat analytial solution for the transition density.For the Vasiek and CIR SR proesses, we employed the exat transition density to generatesimulated trajetories (e.g. Ait-Sahalia (2002)).Note that this detail is of fundamental importane. Before disussing this point, we willintrodue the notation of strong onvergene of disretizations. Suppose that we want togenerate a trajetory of the stohasti di�erential equation dXt = µ(t,Xt) + σ(t,Xt)dWt em-ploying a disretization that generates trajetories Y △
t of this proess, and that the trajetoriesof this approximation onverged to the true trajetory. An approximation Y △

t is said to bestrong order onvergent γ > 0 if there are positive onstants K and γ so that eah △ is valid:
E
(
|Xt − Y △

t |
)
≤ K△γ ,in whih K does not depend on the disretization interval △. On usual Lipshitz andgrowth onditions, it is possible to demonstrate (e.g. Kloeden and Platen (1992), Prakasa Rao(1999)) that the Euler disretization onverges with strong order γ = 0.5 and the Milsteindisretization (Milstein (1974)) is strong order onvergent with γ = 1.As the disretization employed in moment onditions is of strong order inferior to thatemployed in the proess simulation, an inorret spei�ation problem arises generated by thedisretization employed. This problem ours in a more intense form when the exat solutionof the stohasti di�erential equation an be used to generate the proess trajetory. Thefundamental point is that, in the estimation based on approximated disretizations, there isalways a bias generated by the proess disretization, and one of the objetives of the MonteCarlo study is to verify whether any method manages to produe a redution in the bias inrelation to this e�et, whih an be interpreted as a spei�ation problem. Note that in Chanet al. (1992)'s original artile, the disretization employed is still simpler than Euler's, andthus the existing bias in the estimators must be even greater.



GEL/GMC ESTIMATION OF STOCHASTIC DIFFERENTIAL EQUATIONS 20GMM2S GMMITER GMMCUE GEL ET GELCUE ETEL SGEL SET SGELCUE SETELmean α 0.0585 0.0585 0.0585 0.0555 0.0591 0.0594 0.0427 0.0529 0.0584 0.0592 0.0419bias α 0.0177 0.0177 0.0177 0.0147 0.0183 0.0186 0.0019 0.0121 0.0176 0.0184 0.0011mse α 0.0006 0.0006 0.0006 0.0005 0.0006 0.0006 0.0001 0.0004 0.0006 0.0006 0.0001mae α 0.0190 0.0190 0.0190 0.0171 0.0198 0.0199 0.0055 0.0147 0.0194 0.0198 0.0063mean β −0.8595 −0.8595 −0.8595 −0.8095 −0.8696 −0.8736 −0.5588 −0.7687 −0.8596 −0.8720 −0.5719bias β −0.2674 −0.2674 −0.2674 −0.2174 −0.2775 −0.2815 0.0333 −0.1766 −0.2675 −0.2799 0.0202mse β 0.1347 0.1347 0.1347 0.1142 0.1478 0.1462 0.0060 0.0874 0.1452 0.1465 0.0058mae β 0.2884 0.2884 0.2884 0.2599 0.3050 0.3057 0.0501 0.2229 0.3017 0.3059 0.0533mean σ2
2.0247 2.0247 2.0247 1.5815 1.3286 1.3440 1.7024 1.6174 1.3095 1.3495 1.7090bias σ2
0.3543 0.3543 0.3543 −0.0889 −0.3418 −0.3264 0.0320 −0.0530 −0.3609 −0.3209 0.0386mse σ2
2.9527 2.9527 2.9527 1.4709 1.9360 2.1132 0.0045 0.9256 1.4653 2.3160 0.0143mae σ2
0.7768 0.7768 0.7768 0.7532 0.3050 1.0843 0.0447 0.6088 0.9348 1.0786 0.0597mean γ 1.4939 1.4939 1.4939 1.4426 1.3792 1.3749 1.5450 1.4612 1.3880 1.3790 1.5450bias γ −0.0060 −0.0060 −0.0060 −0.0573 −0.1207 −0.1250 0.0451 −0.0387 −0.1119 −0.1209 0.0451mse γ 0.0263 0.0263 0.0263 0.0206 0.0413 0.0445 0.0049 0.0146 0.0367 0.0477 0.0050mae γ 0.0996 0.0996 0.0996 0.1079 0.1667 0.1746 0.0479 0.0876 0.1547 0.1747 0.0507Table 2. Monte Carlo - Generalized CIR Model - α =0.0408, β =-0.5921,

σ2 = 1.6704, γ =1.4999.The �rst Monte Carlo experiment orresponds to the simulation of 1,000 trajetories ofsize 474 of a Generalized CIR proess with a parameter vetor given by α =0.0408, β =-0.5921, σ2 =1.6704 and γ =1.4999. This set of parameters, and all other parameters usedin Monte Carlo analysis, are based on estimated values in the artile by Chan et al. (1992)for the series of Treasury Bills, and thus re�et values onsistent with real data. The resultsof this experiment are displayed in Table 2 and Figure 4.1. Eah �gure shows respetivelythe bias and MSE obtained by eah estimator. The results obtained demonstrate that thereis a relevant bias in the estimation of all the parameters, and partiularly of parameter σ2.The results in terms of the size of the bias and of the mean square error are quite similar foralmost all the estimators, exept for estimators ETEL and SETEL, whih present far superiorresults in terms of bias, MSE and MAE in relation to the other methods for all the parametersestimated, whih is evident in Figure 4.1.In the Monte Carlo experiment for the Vasiek proess (Table 3 and Figure 4.2), we sim-ulated again 1,000 trajetories with a parameter vetor given by α = 0.0154, β = −0.1779,
σ2 = 0.0004 and γ = 0. The results indiate again that the ETEL estimators' performane issuperior, and it is also notieable that, in this experiment, the estimator with the worst per-formane was the estimator GMMCUE. For the CIR SR proess (Table 4 and Figure 4.3), wesimulated trajetories of the proess with α = 0.0189, β = −0.2339, σ2 = 0.0073 and γ = 0.5.The same behavior of better performane of the ETEL lass of estimators was observed, aswell as a similar performane of the other estimators.



GEL/GMC ESTIMATION OF STOCHASTIC DIFFERENTIAL EQUATIONS 21GMM2S GMMITER GMMCUE GEL ET GELCUE ETEL SGEL SET SGELCUE SETELmean α 0.0263 0.0263 0.0330 0.0235 0.0262 0.0262 0.0181 0.0220 0.0262 0.0263 0.0174bias α 0.0109 0.0109 0.0176 0.0081 0.0108 0.0108 0.0027 0.0066 0.0108 0.0109 0.0020mse α 0.0003 0.0003 0.0271 0.0002 0.0003 0.0003 <1e-4 0.0002 0.0003 0.0004 <1e-4mae α 0.0129 0.0129 0.0195 0.0101 0.0128 0.0129 0.0035 0.0086 0.0128 0.0130 0.0036mean β −0.3031 −0.3034 −0.3096 −0.2668 −0.3015 −0.3018 −0.1705 −0.2470 −0.3022 −0.3035 −0.1701bias β −0.1252 −0.1255 −0.1317 −0.0889 −0.1236 −0.1239 0.0074 −0.0691 −0.1243 −0.1256 0.0078mse β 0.0408 0.0412 0.0850 0.0257 0.0405 0.0410 <1e-4 0.0188 0.0405 0.0422 0.0001mae β 0.1442 0.1446 0.1517 0.1087 0.1429 0.1437 0.0075 0.0897 0.1434 0.1451 0.0079mean σ2
0.0004 0.0004 0.0042 0.0002 0.0004 0.0004 −0.0007 0.0002 0.0004 0.0004 −0.0004bias σ2 <1e-4 <1e-4 0.0038 −0.0002 <-1e-4 <-1e-4 −0.0011 −0.0002 <-1e-4 <-1e-4 −0.0008mse σ2 <1e-4 <1e-4 0.0089 <1e-4 <1e-4 <1e-4 <1e-4 <1e-4 <1e-4 <1e-4 <1e-4mae σ2 <1e-4 <1e-4 0.0038 0.0002 0.1429 <1e-4 0.0017 0.0003 <1e-4 <1e-4 0.0022Table 3. Monte Carlo - Vasiek Model - α = 0.0154, β = −0.1779, σ2 =

0.0004, γ = 0.GMM2S GMMITER GMMCUE GEL ET GELCUE ETEL SGEL SET SGELCUE SETELmean α 0.0273 0.0274 0.0273 0.0263 0.0268 0.0272 0.0354 0.0241 0.0269 0.0273 0.0322bias α −0.0116 −0.0115 −0.0116 −0.0126 −0.0121 −0.0117 −0.0035 −0.0148 −0.0120 −0.0116 −0.0067mse α 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0002 0.0003 0.0003 0.0003 0.0002mae α 0.0139 0.0139 0.0139 0.0143 0.0143 0.0140 0.0095 0.0161 0.0143 0.0139 0.0114mean β −0.3536 −0.3549 −0.3547 −0.2539 −0.3438 −0.3520 −0.2243 −0.2501 −0.3441 −0.3543 −0.2222bias β −0.1197 −0.1210 −0.1208 −0.0200 −0.1099 −0.1181 0.0096 −0.0162 −0.1102 −0.1204 0.0117mse β 0.0374 0.0382 0.0382 0.0086 0.0337 0.0373 0.0003 0.0077 0.0346 0.0381 0.0003mae β 0.1468 0.1482 0.1480 0.0497 0.1377 0.1458 0.0110 0.0457 0.1387 0.1478 0.0128mean σ2
0.0072 0.0072 0.0072 0.0077 0.0073 0.0072 0.0103 0.0088 0.0073 0.0072 0.0115bias σ2 <-1e-4 <-1e-4 <-1e-4 0.0004 <-1e-4 <-1e-4 0.0030 0.0015 <-1e-4 <-1e-4 0.0042mse σ2 <1e-4 <1e-4 <1e-4 <1e-4 <1e-4 <1e-4 <1e-4 <1e-4 <1e-4 <1e-4 <1e-4mae σ2
0.0004 0.0004 0.0004 0.0009 0.1377 0.0004 0.0041 0.0019 0.0004 0.0004 0.0054Table 4. Monte Carlo - CIR-SR Model - α = 0.0189, β = −0.2339, σ2 =

0.0073, γ = 0.5.Note that, so far, the problem of inorret spei�ation was aused only by the use ofapproximated disretization in the onstrution of the proess' moment onditions. In orderto verify whether the better performane properties of the ETEL lass of estimators arevalid in more general situations of inorret spei�ation, we employed, as data generatingproess, trajetories of the Generalized CIR proess with parameter vetor α =0.0408, β =-0.5921, σ2 =1.6704 and γ =1.4999. However, as spei�ation of the estimated model, we nowemployed a CIR SR model assuming that γ = .5.The results of this experiment (Table 5 and Figure 4.4) indiate that, in this general ase, abetter performane of ETEL and ET estimators also ours, but the other estimators have amuh worse performane in relation to the estimation of parameter σ2. Note that the problemof inorret spei�ation is expeted, in this situation, to a�et mainly the estimation of theproess variane, beause, in the lasses of CIR models, the volatility is a funtion of the levelof proess with parameter γ.



GEL/GMC ESTIMATION OF STOCHASTIC DIFFERENTIAL EQUATIONS 22GMM2S GMMITER GMMCUE GEL ET GELCUE ETEL SGEL SET SGELCUE SETELmean α 0.0589 0.0688 0.0461 0.0198 0.0312 0.0426 0.0187 0.0167 0.0313 0.0548 0.0210bias α 0.0181 0.0280 0.0053 −0.0210 −0.0096 0.0018 −0.0221 −0.0241 −0.0095 0.0140 −0.0198mse α 0.0009 0.0015 0.0020 0.0007 0.0024 0.0034 0.0032 0.0007 0.0114 0.0025 0.0119mae α 0.0217 0.0334 0.0366 0.0236 0.0227 0.0501 0.0230 0.0249 0.0252 0.0434 0.0271mean β −0.8801 −1.0498 −0.6860 −0.2530 −0.3515 −0.6374 −0.2211 −0.2307 −0.3347 −0.8366 −0.2279bias β −0.2880 −0.4577 −0.0939 0.3391 0.2406 −0.0453 0.3710 0.3614 0.2574 −0.2445 0.3642mse β 0.1998 0.4041 0.5297 0.1449 0.1839 0.8179 0.1387 0.1368 0.1857 0.6700 0.1675mae β 0.3408 0.5425 0.5972 0.3739 0.3916 0.8046 0.3710 0.3685 0.3848 0.7148 0.3753mean σ2
0.0081 0.0081 0.0082 0.0093 0.0269 0.0107 0.0147 0.0136 0.0140 0.0085 0.0188bias σ2

−1.6623 −1.6623 −1.6622 −1.6611 −1.6435 −1.6597 −1.6557 −1.6568 −1.6564 −1.6619 −1.6516mse σ2
2.7632 2.7633 2.7628 2.7593 2.9352 2.7588 2.7417 2.7452 2.7466 2.7621 2.7358mae σ2
1.6623 1.6623 1.6622 1.6611 0.3916 1.6604 1.6557 1.6568 1.6565 1.6619 1.6539Table 5. Monte Carlo - Misspei�ed Model - α =0.0408, β =-0.5921,σ2 =1.6704, γ =1.4999.
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Monte Carlo Generalized CIR α =.0.0408 β =.5921 σ2 =1.6704 γ=1.4999

Figure 4.1. Monte Carlo Generalized CIR ModelTo show the e�et of sample size in the estimation, we performed the same Monte Carloproedure for the CIR SR model5, now using a sample size of 2000, shown in Table 6. Asexpeted, the results indiate that all the estimators show substantial redutions in the bias,MSE and MAE, but still are dominated by ETEL estimator. The results of this table alsoshow that GMM based estimators on need a larger sample size to ahieve a performane loseto the estimators based on GEL/GMC, as is evident in this table.Although it is interesting to analyze the e�et of disretization on the properties of esti-mators, there is a simple way to perform this analysis, sine it is impossible to separate the5We perform this same study for other models studied and the results are similar.
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Figure 4.2. Monte Carlo Vasiek Model
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Figure 4.3. Monte Carlo CIR-SR Modele�et of sample size in this analysis. For example a study with a sample size of 500 with dis-retization interval of 1/12, as studied in this artile, would be equivalent to a sample of 41.66years. A sample disretization of 1/365 (daily data) with 500 observations overs a period of1.36 years, a very limited time span to analyze a series of interest rates, and very sensitive to
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Figure 4.4. Monte Carlo Misspei�ed CIR ModelGMM2S GMMITER GMMCUE GEL ET GELCUE ETEL SGEL SET SGELCUE SETELmean α 0.0209 0.0209 0.0209 0.0209 0.0209 0.0209 0.0194 0.0206 0.0209 0.0209 0.0194bias α 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0005 0.0017 0.0020 0.0020 0.0005mse α <1e-4 <1e-4 <1e-4 <1e-4 <1e-4 <1e-4 <1e-4 <1e-4 <1e-4 <1e-4 <1e-4mae α 0.0040 0.0040 0.0040 0.0039 0.0040 0.0040 0.0022 0.0036 0.0040 0.0040 0.0019mean β −0.2621 −0.2623 −0.2623 −0.2611 −0.2620 −0.2619 −0.2257 −0.2573 −0.2622 −0.2624 −0.2260bias β −0.0282 −0.0284 −0.0284 −0.0272 −0.0281 −0.0280 0.0082 −0.0234 −0.0283 −0.0285 0.0079mse β 0.0049 0.0049 0.0049 0.0047 0.0049 0.0049 0.0002 0.0041 0.0049 0.0050 0.0002mae β 0.0528 0.0529 0.0529 0.0508 0.0527 0.0527 0.0094 0.0474 0.0527 0.0530 0.0096mean σ2
0.0073 0.0073 0.0073 0.0073 0.0073 0.0073 0.0073 0.0073 0.0073 0.0073 0.0075bias σ2 <-1e-4 <-1e-4 <-1e-4 <-1e-4 <-1e-4 <-1e-4 <1e-4 <1e-4 <-1e-4 <-1e-4 0.0002mse σ2 <1e-4 <1e-4 <1e-4 <1e-4 <1e-4 <1e-4 <1e-4 <1e-4 <1e-4 <1e-4 <1e-4mae σ2
0.0002 0.0002 0.0002 0.0002 0.0527 0.0002 0.0006 0.0002 0.0002 0.0002 0.0010Table 6. Monte Carlo - CIR-SR Model , Sample Size 2000 - α = 0.0189, β =

−.2339, σ2 = 0.0073, γ = .5.initial onditions, sine for the usual values of the persistene parameter estimated for modelsof interest rates (e.g. Chan et al. (1992)) the half-life for the error orretion proess is muhlonger than this period, and so the results are very dependent on the initial onditions andnot representative.5. Monte Carlo Evidene - Conditional MomentsIn the simulations presented so far, the properties of the estimators were studied usingsimple Euler disretizations of stohasti di�erential equations. Although this methodology isappliable to any stohasti di�erential equation without requiring the existene of analytial



GEL/GMC ESTIMATION OF STOCHASTIC DIFFERENTIAL EQUATIONS 25solutions, for the models with known analytial solutions the use of simple disretizations of theproess may represent as ine�ient use of the available information when it is possible to deriveexpliit onditional moments of the proess. To analyze the properties of the estimators basedon onditional moments we performed two analysis. In the �rst analysis we build onditionalmoment onditions obtained by analytial solution of stohasti di�erential equation for theCIR SR proess. In the seond we use the It� Conditional Moment Generator Methodologyproposed in Zhou (2003) whih gives onditional moments through the use of Generalized Ito'slemma (Merton (1971) and Lo (1988))6. In these two proedures we performed a Monte Carloanalysis for the CIR-SR proess with the same parameters used in the previous setion.Rewriting the CIR SR model as:(5.1) dr(t) = κ(θ − r(t))dt+ σ
√

r(t)dW (t)the transition density of this proess is given by the following non-entral χ2 density:
pr(t)(x) = pχ2(η,λt)/ct(x) = ctpχ2(η,λt)(ctx)(5.2)

with : ct =
4κ

σ2(1− exp(−κt))
(5.3)

η = 4κθ/σ2(5.4)
λt = ctr0exp(−κt).(5.5)Thus we obtain the onditional moments as:

E[rt|rs] = rs + rse
−κ(t−s) + θ

(
1− e−κ(t−s)

)(5.6)
V ar[rt|rs] = rs

σ2

κ
(e−κ(t−s) − e−2κ(t−s)) + θ

σ2

2κ

(
1− e−κ(t−s)

)2(5.7)6This approah was reently generalized in Cuhiero et al. (2010) and Filipovi et al. (2011) to a lass knownas Polynomial Proess, whih also inlude Levy proesses in addition to a�ne di�usion models.



GEL/GMC ESTIMATION OF STOCHASTIC DIFFERENTIAL EQUATIONS 26and from these moments reate the array of four moment onditions by multiplying thesetwo onditions by rt−1. The Monte Carlo analysis from this spei�ation is shown in Table 7.Compared to the results obtained for the estimation using non-onditional moments (Table 4)results indiate that with this spei�ation we obtain a bias generally smaller (but positive)for the parameter α, but at the ost of a higher bias for the parameter β, while for α parameterthe results are equivalent. In terms of mse and mae for all parameters the results are basiallyequivalent to the estimation using unonditional moments.GMM2S GMMITER GMMCUE GEL ET GELCUE ETEL SGEL SET SGELCUE SETELmean α 0.0284 0.0284 0.0284 0.0284 0.0284 0.0284 0.0212 0.0284 0.0284 0.0284 0.0212bias α 0.0095 0.0095 0.0095 0.0095 0.0095 0.0095 0.0023 0.0095 0.0095 0.0095 0.0023mse α 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0001 0.0002 0.0002 0.0002 <1e-4mae α 0.0113 0.0113 0.0112 0.0112 0.0112 0.0112 0.0047 0.0112 0.0112 0.0113 0.0045mean β −0.3619 −0.3619 −0.3619 −0.3612 −0.3608 −0.3617 −0.2452 −0.3605 −0.3617 −0.3620 −0.2452bias β −0.1280 −0.1280 −0.1280 −0.1273 −0.1269 −0.1278 −0.0113 −0.1266 −0.1278 −0.1281 −0.0113mse β 0.0414 0.0414 0.0414 0.0411 0.0412 0.0413 0.0048 0.0409 0.0413 0.0414 0.0047mae β 0.1486 0.1486 0.1486 0.1479 0.1475 0.1485 0.0308 0.1471 0.1480 0.1486 0.0300mean σ2 0.0073 0.0073 0.0073 0.0073 0.0073 0.0073 0.0074 0.0073 0.0073 0.0073 0.0075bias σ2 <-1e-4 <-1e-4 <-1e-4 <-1e-4 <-1e-4 <-1e-4 <1e-4 <1e-4 <-1e-4 <-1e-4 0.0002mse σ2 <1e-4 <1e-4 <1e-4 <1e-4 <1e-4 <1e-4 <1e-4 <1e-4 <1e-4 <1e-4 <1e-4mae σ2 <1e-4 <1e-4 <1e-4 <1e-4 0.1475 <1e-4 <1e-4 <1e-4 <1e-4 <1e-4 0.0003Table 7. Monte Carlo - CIR-SR Model - Conditional moments - α =
0.0189, β = −.2339, σ2 = 0.0073, γ = .5.The seond methodology for the onstrution of onditional moments is based on the It�Conditional Moment Generator Methodology proposed in Zhou (2003). The methodologyonsiders all the onditional moments of K'th order simultaneously applying the GeneralizedIt�'s lemma to eah rkT and then takes the onditional expetation:

E(rkT ) = rkt +Et

[∫ T

t
(µukr

k−1
u +

1

2
σ2k(k − 1)rk−2

u )du

]
.Taking the derivative with respet to time T, and interhanging the expetation and inte-gration operators is possible to obtain a system of di�erential equations of the form:

dEt(r
k
s )

ds
= Et

[
µskr

k−1
s +

1

2
σ2k(k − 1)rk−2

u )

]subjet to boundary ondition Et(r
k
t ) = rkt .The lass of systems that have analytial solutions is the set of proesses with solutions inthe form:
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Et(RT ) = e(T−t)A(β)Rt +A−1(β)

(
e(T−t)A(β) − I

)
g(β)

dEt(Rs)

ds
= A(β) + Et(Rs) + g(β)where I is the KxK identity matrix and e denotes the matrix exponential.For the CIR SR proess for the solution of the system onsists of the matries A(β) and

g(β) in the form:
A(β) =




−κ 0 0 0

2κθ + σ2 −2κ 0 0

0 3κθ + 3σ2 −3κ 0

0 0 4κθ + 6σ2 −4κ




g(β) =




κθ

0

0

0


In this example we follow the example in Zhou (2003), who used as moment onditions themoments E(rkT ) of order K = 1,2,3,4, multiplied by rkt−1, again with k = 1,2,3,4 with a totalof 16 onditional moment onditions. The results of this experiment are shown in Table 8.The overall results ompared to results obtained earlier for the CIR SR model, indiate thatthis method an redue the bias, mse and mae for the parameters α, but most notably for themethods based on GEL/GMC . However for the parameter β the results are di�erent, showingan inrease in bias for the estimators based on GMM and the GEL estimator. Similarly themse inrease for estimators based on GMM and the GEL estimator, and derease for theothers. For the parameter σ2 the results indiate that this estimation method is slightly worstin terms of bias and mae.We an make some onsiderations on the use of onditional moments. The �rst importantpoint to note is that the lass of models that admit onditional moments in analyti formis rather limited, as opposed to the use of Euler disretizations that an be used generally.Another important aspet to note is that the estimators based on the Generalized Ito's lemma



GEL/GMC ESTIMATION OF STOCHASTIC DIFFERENTIAL EQUATIONS 28shows omplexity and omputational ost muh higher than the other estimators, beause itis neessary to evaluate the matrix exponential. In summary, onsidering the generality andthe gains in performane in �nite samples, the estimators based on unonditional momentsderived from the Euler disretizations are still ompeting.GMM2S GMMITER GMMCUE GEL ET GELCUE ETEL SGEL SET SGELCUE SETELmean α 0.0291 0.0294 0.0286 0.0231 0.0186 0.0184 0.0206 0.0192 0.0184 0.0183 0.0192bias α 0.0102 0.0105 0.0097 0.0042 −0.0003 −0.0005 0.0017 0.0003 −0.0005 −0.0006 0.0003mse α 0.0003 0.0003 0.0003 0.0001 <1e-4 <1e-4 <1e-4 <1e-4 <1e-4 <1e-4 <1e-4mae α 0.0121 0.0124 0.0121 0.0079 0.0028 0.0027 0.0040 0.0031 0.0028 0.0028 0.0031mean β −0.3828 −0.3901 −0.3749 −0.2916 −0.2256 −0.2245 −0.2233 −0.2230 −0.2251 −0.2243 −0.2230bias β −0.1489 −0.1562 −0.1410 −0.0577 0.0083 0.0094 0.0106 0.0109 0.0088 0.0096 0.0109mse β 0.0549 0.0600 0.0582 0.0176 0.0003 0.0002 0.0002 0.0002 0.0003 0.0002 0.0002mae β 0.1717 0.1789 0.1696 0.0868 0.0119 0.0114 0.0114 0.0117 0.0117 0.0111 0.0117mean σ2 0.0070 0.0069 0.0070 0.0069 0.0067 0.0066 0.0071 0.0071 0.0065 0.0065 0.0071bias σ2
−0.0003 −0.0004 −0.0003 −0.0004 −0.0006 −0.0007 −0.0002 −0.0002 −0.0008 −0.0008 −0.0002mse σ2 <1e-4 <1e-4 <1e-4 <1e-4 <1e-4 <1e-4 <1e-4 <1e-4 <1e-4 <1e-4 <1e-4mae σ2 0.0008 0.0008 0.0008 0.0020 0.0119 0.0011 0.0010 0.0010 0.0012 0.0013 0.0010Table 8. Monte Carlo - CIR-SR Model - It� Conditional Moment Generator- α = 0.0189, β = −.2339, σ2 = 0.0073, γ = .5.

6. ConlusionsIn this artile we onsider semi-parametri methods based on the empirial likelihood/generalizedminimum ontrast for the estimation of stohasti di�erential equations. These estimators areharaterized by properties of asymptoti e�ieny of higher order, properties of optimalityin hypotheses testing and robustness of the estimators based on exponential tilting in relationto inorret spei�ation. These properties are partiularly important in the ontext of esti-mation of stohasti di�erential equations, sine, in general, it is not possible to onstrut theexat likelihood funtion of the proess due to the non-existene of analytial solutions (andonsequently of exat disretizations) for stohasti di�erential equations. These methodsallow to approximate the density of these proesses using a nonparametri approximation ofthe log-likelihood, allowing for the inorporation of this information into the estimates of theparameters of the stohasti di�erential equations.The results indiate that these methods yields good properties in �nite samples, ahievingan overall performane superior to the generalized methods of moments usually employed inthe estimation of stohasti di�erential equations using moment onditions. The results also



GEL/GMC ESTIMATION OF STOCHASTIC DIFFERENTIAL EQUATIONS 29indiate that estimators based on the unonditional moments derived from the Euler disretiza-tions have a performane omparable to the same estimators onstruted from onditionalmoments derived from transition densities. However, the last onditional moments an onlybe derived in analytial form for a limited lass of proesses. Sine the Euler disretizationsare easily obtained for almost all stohasti di�erential equations, the use of methodologiesbased on empirial likelihood/generalized minimum ontrast allows omputationally simpleestimators with good properties in terms of bias and e�ieny for a wide lass of proesses.The results obtained also indiate that the exponentially tilted empirial likelihood esti-mator, in partiular the one proposed by Shennah (2007), obtains a performane whih issuperior to other proposed tehniques, due to its properties of robustness in the presene ofspei�ation problems. As it is possible to interpret the estimation of the stohasti di�eren-tial equations by employing disrete data as an inorret spei�ation problem, due to the useof an approximated disretization of the model, the results of the Monte Carlo experimentsdemonstrate that the performane of this estimator is quite superior to the other estimationmethods employing moment onditions. Also, in general, the estimators based on empiriallikelihood/generalized minimum ontrast have a better performane in terms of bias and meansquare error than the GMM estimators.AknowledgmentsThis researh was partially supported by FAPESP and CNPq. The authors would like tothank the Assoiate editor and the reviewers for their valuable omments and suggestions.
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1. Introduction

Measurement of asset volatility is a fundamental aspect of finance. Precise volatility mea-
surements in financial asset returns are necessary in certain aspects, such as risk management
(McNeil et al. (2005)) and asset pricing (Singleton (2006)). Among the available forms for
modeling volatility, the class of models known as SV models stands out1. In this class of models,
volatility is treated as a non-observed latent factor. One of the main reason for its popularity
is that SV models can be derived from continuous time diffusions (e.g. Barndorff-Nielsen
et al. (2002)), and, thus they become closer to the pricing literature using no-arbitrage and
martingale methods. These models are also attractive because, as empirical evidence shows,
they are better at capturing stylized facts of financial series, and their predicative performance
is superior in comparison to other classes of volatility models (e.g. Koopman et al. (2005)),
such as, for example, the class of GARCH models (Engle (1982), Bollerslev (1986)). However,
as volatility is treated as a non-observable latent process, the estimation of volatility models
is more complicated than the estimation of concurrent models, such as the GARCH class,
in which volatility is a deterministic function of the past, which makes the evaluation the
likelihood function a simple procedure.

In SV models, the exact evaluation of the likelihood function, due to the presence of the
latent volatility factor, requires the calculation of an integral with a dimension equivalent to
the sample size. The numeric evaluation of this problem requires methods based on simulation,
such as importance sampling methods (e.g. Geweke (1994), Liesenfeld and Richard (2003)) or
Markov Chain Monte Carlo (MCMC) (Shephard (1993),Jacquier et al. (1994)). Although these
methods are efficient and with the currently available computational power, quite feasible,
some problems still remain, such as the determination of a function of importance appropriate
or the problem of correlation in the chains in MCMC sampling. It is also possible to work
with likelihood function approximations, such as the estimation by quasi-maximum Likelihood
(Harvey et al. (1994), Jungbacker and Koopman (2009)), based on a linearization of the SV
model. In this methodology, the evaluation of the likelihood functions is made by means of
a decomposition of the prediction error using the Kalman filter, which renders a consistent
estimator which is asymptotically Gaussian though inefficient and biased in finite samples.

Other ways of evaluating this model employ the estimation by simulation using the methods
of indirect inference and the efficient method of moments (Gourieroux et al. (1993), Gallant
and Tauchen (1996)). These two methods are asymptotically efficient, and have good proper-
ties in finite samples (Monfardini (1998)), but they are less efficient than the MCMC methods
of Shephard (1993) and Jacquier et al. (1994). The simplest estimation form for volatility
models is the method of moments, the original form of estimation employed in the estimation
of the seminal log-normal SV model proposed by Taylor (1986). This methodology was later
refined by Melino and Turnbull (1990) through the use of the generalized method of moments
(GMM) by Hansen (1982), which generates consistent and asymptotically efficient estimators.
These estimators are computationally simple, but their properties in finite samples can be
poor and they are inefficient when compared with estimators based on MCMC. A comprehen-
sive study of these estimators’ properties can be found in Andersen and Sorensen (1996), and
a complete survey about the estimation of SV models using the method of moments can be
found in Renault (2009).

1For a review of methods for estimating SV models see, for example, Broto and E. (2004), Ghysels et al.
(1996), Shepard and Andersen (2009) and Jungbacker and Koopman (2009)
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The performance of SV model estimators employing GMM is weakened by the fact that the
GMM estimator’s bias grows with the number of moment conditions (e.g. Newey and Smith
(2004)), and the efficiency in this method depends on an adequate choice of the moment
conditions. The GMM estimator manages to reach the efficiency of the maximum likelihood
estimator if one of the moments is the score function of the maximum likelihood estimator, or
if the moments employed project this function. In practice, the efficient estimation by GMM
involves the use of a large number of moment conditions. As the bias in finite samples of
the GMM estimator is proportional to the number of moments employed, there is a trade-
off between bias and variance in the estimation by GMM when a high number of moment
conditions is used. Another problem in the estimation of SV models by GMM is the lack of
robustness in the moment conditions employed. The estimation of the log-normal SV model
is based on conditions that employ moments of superior orders, and this can be a serious
problem in the presence of outliers or processes of heavy-tailed innovation. In this situation,
the effects of outliers in the sample are raised to potencies of third or fourth order, which
significantly affects the estimation in finite samples.

A further problem lies in the formulation of moment conditions. Although the GMM
estimator is semi-parametric, and thus it is not necessary to specify the distribution function of
the process, the formulation of moment conditions for SV models generally employs moments
derived from the specification of a distribution function for the innovations, as in the case
of the so-called log-normal SV model of Taylor (1986). If this assumption is not valid, the
properties of the GMM estimator may be degraded.

In this way, the computationally simplest implementation of the generalized method of mo-
ments leads to an estimator with poor properties in finite samples (Andersen and Sorensen
(1996)), and, on the other hand, the implementation of efficient estimators, such as the meth-
ods based on MCMC, are computationally intensive and subject to convergence problems. In
this study we propose an alternative form of estimation employing semi-parametric methods
of generalized empirical likelihood and generalized minimum contrast. These methods, as will
be demonstrated, represent a computationally simpler way of implementation because they
can be based on the same moment conditions as the estimators of generalized moment meth-
ods, and they produce efficient estimators with good properties in finite samples, as will be
demonstrated by a series of Monte Carlo studies. Estimators based on generalized empiri-
cal likelihood and generalized minimum contrast derive from a semi-parametric methodology,
which permits the estimation of finite dimensional parameters related to the generating process
of the parametric part of the process in question - in our case, the parameters of SV process
- but accomplishing efficiency (in the semi-parametric sense defined by Bickel et al. (1993))
by means of a non-parametric estimation for the process distribution. This enables us to use
the information in the sample in an efficient way. As this methodology uses more information
than the estimation by the generalized method of moments - since the latter employs only
moments and not the whole information in the sample, it manages to present superior prop-
erties in finite samples, comparable or superior to simulation based methods such as MCMC,
efficient method of moments, or minimum Hellinger distance (Takada (2009)).

Furthermore, the proposed estimators also address the problem of lack of robustness in
the presence of outliers. Two sub-classes of estimators studied (the Exponential Tilting (ET)
estimator (Imbens et al. (1998), Kitamura and Stutzer (1997)) and the Exponentially Tilted
Empirical Likelihood (ETEL) estimator (Schennach (2007)) have properties of robustness in
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the presence of incorrect specification problems, and these properties appear to be impor-
tant in the presence of outliers contaminating the data and in the presence of heavy-tailed
distributions in the innovations of the mean and of the process volatility.

This study’s analysis methodology is based on Monte Carlo studies for the verification of the
properties of the proposed estimators. In order to obtain compatibility in the results obtained,
we followed the same designs of Monte Carlo experiments used in the studies by Jacquier
et al. (1994), Andersen and Sorensen (1996) and Takada (2009), which facilitates a direct
comparison of the results. The Monte Carlo experiments are based on the specifications by
Taylor (1986)’s log-normal SV model used in those studies. The simulated series are estimated
by methods employing estimators of generalized empirical likelihood, ET and ETEL, as well
as the smoothed moments’ versions of these models. As reference criterion we will also use the
estimation by generalized method of moments, employing two-stage, iterated and continuous
updating versions. This benchmarking is useful because the moment conditions are the same.

The objective of these analyses is to verify the properties of the estimators proposed in
relation to the size of the sample used, the set of moment conditions, and in relation to
the robustness in the presence of heavy-tailed processes of innovation and outliers. To this
end, we undertook three classes of experiments. In the first class, we analyzed the effect of
sample size and of the set of instruments, analyzing the estimation with sample sizes of 250,
500 and 1,000 observations, using sets of 24 and 14 moment conditions, following Andersen
and Sorensen (1996)’s study. In the second class, we verified the estimators’ properties in
the presence of heavy-tailed innovation processes, and for this we employed two experiment
configurations. The first configuration uses a Student t distribution with 4 degrees of freedom
as innovation process of the mean; and in the second configuration, we used the same Student
t distribution with 4 degrees of freedom, but now as innovation process in the equation that
describes the process volatility. The last class of experiments verifies the effect of the outliers
on the estimation, and once again, with two kinds of experiments. The first experiment verifies
the effects of an outlier on the mean equation (Level Outlier as named by Hotta and Tsay
(1998); and the second experiment verifies the effect of an outlier on the volatility equation
(Volatility Outlier according to Hotta and Tsay (1998)).

This study is structured as follows: in section 2 we briefly revise the log-normal SV model
employed; in section 3, we revise the use of moment conditions in the estimation of SV models;
in section 4, we present the estimation methods based on empirical likelihood and generalized
minimum contrast; section 5 shows Monte Carlo experiments; and the final conclusions are in
section 6.

2. Log-Normal Stochastic Volatility Model

The so-called log-normal volatility model introduced by Taylor (1986) can be described by
the following structure:

(1) yt = σtεt,

(2) logσ2
t = α+ βlogσ2

t−1 + σut,

where the equation 1 describes the behavior of the process mean, and equation 2 contains
the volatility dynamics. It is usually assumed that the innovation processes in the mean and in
volatility are given by independent normal distributions, that is, (εt, ut) ∼ iidN (0, I2) and in
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this model the parameter vector is given by θ = (α, β, σ). Note that it is possible to interpret
this model in a semi-parametric form, as pointed out by Renault (2009), without an a priori
specification of the innovation process distributions. Renault (2009) denotes this model as
Exponential - SARV because the variance exponential is an autoregressive process.

As demonstrated by Francq and Zakoïan (2006), it is not necessary to assume a distribution
for this model’s estimation, since, as previously noted by Ruiz (1994), logy2t = logσ2

t−1+ logε2t ,
and this corresponds to an ARMA model (1,1) for the log of the square of the observed process
yt, which makes it possible to derive the representation employed by Francq and Zakoïan
(2006) to obtain a consistent estimator by least squares for this model. Francq and Zakoïan
(2006) also demonstrate that there is an ARMA(m,m) model for any logymt potency of this
process, although it is important to note that the log-normal representation is quite realistic,
as indicated by Andersen (1994).

This log-normal specification makes it possible to construct moment conditions of any order,
as demonstrated by Taylor (1986) and Melino and Turnbull (1990). The moment conditions
of the log-normal SV model can be obtained by initially defining the unconditional mean and
variance of the logarithm of the variance:

µ = E
[
log σ2

t

]
=

α

1− β
, σ2

y = V ar
[
log σ2

t

]
=

σ2

1− β2
,

and the remaining moments as:

E [|yt|] = (2/π)1/2 E [σt] ,

E
[
y2t
]
= E

[
σ2
t

]
,

E
[
|y3t |
]
= 2
√

2/πE
[
σ3
t

]
,

E
[
y4t
]
= 3E

[
σ4
t

]
,

E [|ytyt−j|] = (2/π)E [σtσt−j ] ,

E
[
y2t y

2
t−j

]
= E

[
σ2
t σ

2
t−j

]
.

Moments of superior order can be written out as:

E [σr
r ] = exp

(
ru

2
+

r2u2

8

)

for any positive integer j and constants r and s, and in the same way covariances can be
obtained by:

E
[
σr
t σ

s
t−s

]
= E [σr

t ]E [σs
t ] exp

(
rsβjσ2

4

)
.

The moment conditions employed by Andersen and Sorensen (1996) and in our study com-
prise a set of 24 moment conditions using absolute moments of second to fourth order and
lags of first to tenth orders:
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(3) g24t,yt (θ) =
(
|yt|, y2t , |y3t |, y4t , |ytyt−1|, ..., |ytyt−10|, y2t y2t−1, ..., y

2
t y

2
t−10

)

We also employed a second vector of moment conditions with 14 moment conditions given
by:

(4)
g14t,yt (θ) =

(
|yt|, y2t , |y3t |, y4t , |ytyt−2|, |ytyt−4|, |ytyt−6|, |ytyt−8||ytyt−10|, y2t y2t−1, y

2
t y

2
t−3, y

2
t y

2
t−5, y

2
t y

2
t−7, y

2
t y

2
t−9

)

With these two vectors of moment conditions we can perform the estimation using the
generalized method of moments defined in section 3 and the generalized empirical likelihood
and generalized minimum contrast methods in section 4.

3. Estimation of Stochastic Volatility Models using the Method of Moments

The estimation by Hansen (1982)’s generalized method of moments is performed by making
the sample moments equal to the population moments , which is equivalent to equalizing the
moment conditions vector g(θ, Yt) to zero in the form:

(5) g (θ, yt) =
1

T

T∑

t=1

g(θ, yt) = 0.

This system is generally over-identified (there are more moment conditions than param-
eters), and so in general there are no solutions. In order to obtain a solution, a criterion
function must be employed:

(6) J(θ) = g (θ, yt)
′ Wg (θ, yt)

and an optimal solution is defined as the minimization of J(θ), with W being a positive
definite weighting matrix. The fundamental result obtained by Hansen (1982) is to demon-
strate that the asymptotically efficient solution of the estimation is obtained when this matrix
is given by:

(7) W ∗ =
{
lim
t→∞

V ar
(√

Tw (θ)
)}−1

= Ω(θ)−1.

where Ω(θ) denotes the variance-covariance matrix of the model’s parameters. In this
way, the asymptotically efficient weight is obtained by employing the inverse of the variance-
covariance parameter matrix. This matrix is generally unknown, and is usually estimated
using the HAC class of estimators by Newey and West (1987):

(8) Ω̂ =

T−1∑

s=−(T−1)

kh(s)Γ̂s(θ
∗),

where k denotes a kernel function in relation to a certain parameter of bandwidth h, chosen
by means of Newey and West (1987) or Andrews (1991)’s procedures:



ESTIMATION OF STOCHASTIC VOLATILITY MODELS USING GEL/GMC 7

(9) Γ̂s(θ
∗) =

1

T

T∑

t=1

g(θ∗, yt)g(θ
∗, yt+s)

′.

The efficient estimator of the generalized method of moments is then obtained as a solution
to the problem:

(10) θ̂ = argmin
θ

g (θ, yt)
′ Ω̂ (θ∗) g (θ, yt)

There are several forms to carry out the implementation of the GMM estimator. The initial
form proposed by Hansen (1982) is the estimator known as two-stage GMM. This estimator

is obtained by performing a first stage, finding an initial θ̂∗ = argmin g (θ)′Ωg (θ) estimator,
where Ω is an initial weighting matrix, usually an identity matrix. Following from this first

stage, a HAC matrix Ω̂ (θ∗) is calculated in function of that initial estimation, and the final

estimation of the GMM estimator is obtained as θ̂ = argmin g (θ)′ Ω̂ (θ∗) g (θ) with the HAC
matrix that was obtained in the first stage.

A point to be noted is that, in this case, the second stage results depend on the initial
estimation in the first stage, and thus this procedure can create a first order bias, weakening
the estimator’s performance in finite samples (Hansen et al. (1996)). In order to solve this
problem, two alternative procedures were proposed. The first procedure is known as iterative
GMM, in which the first stage estimation is reinitialized with the result of the second stage
estimation, and this iteration continues until the variation in the parameter vector or in the
criterion function becomes smaller than an established tolerance.

Another possible estimator is known as GMM with continuous updating (Hansen et al.

(1996)). In this case, the estimation of the parameter θ̂ is not performed in stages, but rather
by simultaneously employing a numeric optimization algorithm. Starting from an initial vec-
tor θ0 (usually chosen by employing a two-stage GMM method), the estimation is performed

by θ̂ = argmin g (θ)′ Ω̂ (θ∗) g (θ), but now θ and Ω̂ (θ∗) are simultaneously determined by the
numeric optimization procedure. This procedure obtains the same first order properties of the
iterative GMM estimator, but, according to Hansen et al. (1996), it has better properties in
terms of bias in finite samples, and this estimator is invariant under model reparameterization.
According to Newey and Smith (2004) and Anatolyev (2005), the three methods are asymp-
totically equivalent, but the second order bias in finite samples of the continuous updating
estimator is smaller. However, the numeric procedure may be subject to multiple modes in
the objective function, which renders this estimator numerically unstable.

The estimation of the SV model by GMM is performed by employing the moment condi-
tions defined by the vector given by Eq. 3. There are, however, some specific points in the
estimation of SV. As discussed in Melino and Turnbull (1990) and Hall (2005), the numerical
procedure in this problem becomes more difficult due to the presence of non-differentiable
moment conditions by using absolute moments. Although these functions are differentiable at
almost all the points and the use of absolute moments does not affect the asymptotic prop-
erties of the estimators (e.g. Hall (2005)), it is important to discuss how to deal with this
problem. Melino and Turnbull (1990) assume that the value of the function is 0 at the non-
differentiable points, but this procedure can be problematic because it leads to a discontinuity
in the determination of the step size in the numeric optimization algorithm. An alternative
form consists in performing a procedure of numerical interpolation at the non-differentiability
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point, which is the procedure carried out in this study. The properties of this approximation
can be seen in Hall (2005).

Properties of the GMM estimator in the estimation of SV models can be found in Andersen
and Sorensen (1996)’s study, and a complete revision of the use of methods of moments, in-
cluding the use of simulated methods of moments, can be found in Renault (2009). The results
demonstrate that this estimator, despite being computationally simple, has poor properties
in finite samples due to bias and inefficiency problems, although the results are better that
those obtained by the quasi-maximum likelihood estimator (e. g. Jacquier et al. (1994)). The
problem in finite samples of the GMM estimator is related to the need to use a large number
of moments to secure the estimator’s efficiency, but the bias of the GMM estimator in finite
samples is proportional to the number of moment conditions used. Thus, in finite samples
there is a trade-off between bias and efficiency. Note that, although the principal advantage of
the GMM estimator lies in its semi-parametric formulation, which does not require assump-
tions about the sample distribution, the estimator employs only the moments of the process,
and it does not employ all the information contained in the sample.

In Andersen and Sorensen (1996)’s article, several details are discussed in the specification
of the GMM estimator for SV models, such as the choice of the Kernel function and the
bandwidth employed, convergence problems and other subgroups of moment conditions. In
this study we employ the quadratic spectral function as kernel function, with the optimum
bandwidth chosen by Andrews (1991)’s procedure.

4. Generalized empirical likelihood and generalized minimum contrast

Estimators.

The GMM is a method particularly useful in estimating non-linear models when the mo-
ments are known. However there is a trade-off between, on the one hand, the weaker need of
assumptions for its use, and, on the other, the method’s efficiency in finite samples, as dis-
cussed in the previous section. The regularity conditions for GMM estimators (Hansen (1982),
Newey and McFadden (1994), Hall (2005)) involve only conditions for the asymptotic validity
of the moment conditions, and they do not assume stronger conditions such as the knowledge
of process distribution, which represents an underutilization of the information presented in
the sample.

The opposite situation would be the estimation by the method of maximum likelihood,
which uses not only the conditional moments of the process but also all the information
present in the conditional densities. If the process is correctly specified and meets the regular-
ity conditions, it is the best asymptotically Gaussian estimator, besides reaching optimality
in measures such as Badahur efficiency (Kitamura (2006), DasGupta (2008)). Note that the
estimation by maximum likelihood in the context of the estimation of SV models is more
complex because the volatility is a latent variable, and the evaluation of the exact likelihood
function usually requires simulation methods such as importance sampling or MCMC. Ap-
proximations using the quasi-maximum likelihood principle represent a cost in terms of their
inferior performance in finite samples.

In this context, an alternative form of formulating estimators that do not need the paramet-
ric specification of the process distribution consists in employing semi-parametric estimation
methods based on a non-parametric estimation of the likelihood function of the process. These
semi-parametric estimators are known as Empirical Likelihood (EL) methods, formulated as
generalizations of the non-parametric likelihood methods by Kiefer and Wolfowitz (1956).
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According to Kitamura (2006)’s presentation, the non-parametric log-likelihood function of
a sequence of IID data {yi}ni=1 of unknown density is defined as:

(11) `NP (p1, . . . , pn) =

n∑

i=1

log pi, (p1, . . . , pn) ∈ 4,

defining 4 as the simplex {(p1, . . . , pn) :
∑n

i=1 pi = 1, 0 ≤ pi ≤ 1, i = 1, . . . n} .
This definition is equivalent to addressing each point of the sample as originating from

a multinomial distribution with the support given by the sample {yi}ni=1 observations, even
though the yi density is not multinomial. As this formulation does not involve any model and
does not contain the model’s parametric structure, it is somehow nonrestrictive when employed
in inference problems involving a parametric part with a finite number of parameters. The
semi-parametric specification of this process was obtained by Owen (1991), who established
the concept of empirical likelihood.

This formulation is important because it allows connections between the non-parametric
estimation of the likelihood function and the estimation using moment conditions, formulated
with the estimation equation and M-estimators principle - as shown by Qin and Lawless (1994),
and these estimation equations can be formulated by using moment conditions in the same
way as GMM estimators.

Assuming moment conditions given by:

(12) E [g(θ, Y )] =

ˆ

g(θ, y)dµY (y) = 0, θ ∈ Θ ⊂ R
k,

where µY is the distribution of the random variable Y , the estimation problem using moment
conditions can be transformed into a non-parametric likelihood estimation, by the construction
of implicit probabilities pi, and thus the log-likelihood function to be maximized becomes:

(13) `NP (p1, . . . , pn) =

n∑

i=1

log pi, s.t.

n∑

i=1

g(θ, yi)pi = 0

The value that maximizes this expression is the maximum empirical likelihood estimative
and it maximizes the empirical likelihood function of the process and simultaneously imposes
the validity of the moment conditions. These implicit probabilities give more weight to obser-
vations where the moment conditions are closer to zero, and less weight to other observations.
Note that the generalized method of moments can be obtained as a particular case assuming
all weights to be pi = 1/n.

This empirical likelihood formulation is particularly useful in the estimation of models
with latent variables where there is no way of evaluating the exact likelihood function of the
process. Whereas it is not necessary, when dealing with the GMM estimator, to assume the
knowledge of the process likelihood, in the estimators of empirical likelihood the information
of the process distribution is used in the estimation by means of its non-parametric estimation.
This construction makes it possible to obtain efficiency properties in the semi-parametric sense
defined by Bickel et al. (1993).

Note that, when the sample is not an IID process, as time series data present in models
of stochastic volatility and denoted by the index of time t, it is necessary to modify the
treatment given to the moment conditions. In this situation, the method is modified assuming
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that the moment conditions originate from a process that is weakly dependent and possibly
heterokedastic. Anatolyev (2005) proposes to substitute g(θ, yt) for a smoothed version defined
as:

(14) gw(θ, yt) =

m∑

s=−m

w(s)g(θ, yt−s),

where w(s) are weights obtained by a kernel function adding one, in the spirit of a HAC
estimator (Andrews (1991)). This modification makes it possible to obtain the same conditions
of first order asymptotic efficiency present in the GMM methods. The moment conditions are
then as follows:

(15)
T∑

t=1

ptg
w(θ, yt) = 0.

The GMM estimators is generally defined by the minimization of the quadratic form 10, and
in in the overidentified case not all the moment conditions are necessarily equal to zero at the
estimated parameter value. In the empirical likelihood estimators formulated by the moment
conditions, these conditions are set exactly equal to zero using the ponderation given by the
empirical probabilities pt. Note that in models exactly identified, all the proposed estimators
obtain similar results, because in all these estimators the moment conditions are always valid.
An important result is that in overidentified models with valid moment conditions all these
estimators obtain the same asymptotic variance (e.g. Kitamura (2006)).

It is possible to formulate these empirical likelihood estimators as particular cases of the
semi-parametric class of estimators based on the minimization of distances, or, as defined by
Bickel et al. (1993), estimators of generalized minimum contrast (GMC)2. This formulation
makes it possible to obtain the properties of semi-parametric efficiency in this class of estima-
tors. Note that we can also draw a parallel with the interpretation of the GMM estimator as
an estimator of minimum χ2, or the interpretation of quasi-maximum likelihood estimators as
estimators of minimum contrast (White (1982)).

In order to show this alternative interpretation of empirical likelihood estimators, we start
by defining a general divergence function D(P,Q) between two probability measures P and
Q as:

(16) D(P,Q) =

ˆ

φ

(
dP

dQ

)
dQ,

where φ is a convex function. This is an important condition because it allows us to define
the conditions of regularity in the process, e.g. Bickel et al. (1993). Define M as the set of
all probability measures in R

p and P, the statistic model defined by measures of probability
compatible with 17:

(17) P (θ) =

{
P ∈ M :

ˆ

g(θ, y)dP = 0

}

2See Bickel et al. (1993), cap 7, for a general discussion of conditions of regularity, existence and efficiency
of generalized minimum contrast estimators.
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The estimator of generalized minimum contrast is defined as a solution of:

(18) inf
θ∈Θ

inf
P∈P(θ)

D(P, µ),

where µ denote the dominating measure in this model. Thus, in a correctly specified model,
this discrepancy must be the unique, and minimum in θ = θ0.

In order to establish the connection with empirical likelihood estimators defined by equation
15 and the minimum contrast estimators by means of implicit probabilities, it should be noted
that the minimum contrast estimators can be formulated as a problem in the form of moment
conditions E(g(θ, yt)) = 0, turning the minimum contrast estimators into a function of these
probabilities, using contrast function hT :

(19) θ̂n = argmin
θ,pt

T∑

t=1

hT (pt).

In the case of empirical likelihood estimators, the point estimate θ̂ is the value which
minimizes the discrepancy between p̂t and uniform weights. An important result is that an
adequate choice of the discrepancy function can lead to a unified representation of empirical
likelihood and minimum contrast estimators. This representation can be obtained when the
function hT (pt) belongs to the Cressie-Read family of discrepancies given by:

(20) hT (pt) =
[γ(γ + 1)]−1(Tpt)

γ+1 − 1]

T

which encompasses cases of several classes of estimators. Empirical likelihood is obtained
with the restriction γ → 0 in the discrepancy function hT (pt); the method of generalized
minimum contrast, known as ET of Kitamura and Stutzer (1997) and Imbens et al. (1998), is
obtained with γ → −1; and the continuous updating estimator using the empirical likelihood
formulation is obtained with γ → 1.

Note that the problem of estimation involves obtaining estimators not only for the implicit
probabilities but also for the parameters of the parametric part of the model, which is, in
principle, a high dimension optimization problem. Smith (2001) demonstrated that it is
possible to define another estimator that also has these estimators as particular cases, and
that makes possible a dual formulation of inferior dimension.

The Smith (2001) Generalized Empirical Likelihood (GEL) estimate is obtained as a solution
for the following saddlepoint problem:

(21) θ̂n = argmin
θ

[
max
λ

1

T

T∑

t=1

ρ
(
λ′gw(θ, yt)

)
]
,

where λ defines Lagrange multipliers imposing a restriction:

(22)
T∑

t=1

ptg
w(θ, yt) = 0.

Estimators are obtained by solving the previous equation with the first-order condition:
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(23)

T∑

t=1

ptλ
′ ∂g

w(θ, yt)

∂θ
= 0

with:

(24) pt =
1

T
ρ′
(
λ′gw(θ, yt)

)
.

This generalized likelihood estimator contains the empirical likelihood estimator, assuming
the same conditions of the Cressie-Read divergence function over γ, through modifications of
functions h and ρ. The EL estimator is obtained by h(p) = −ln np and ρ(ξ) = ln(1− ξ); the
ET estimator by (Kitamura and Stutzer (1997) , Imbens et al. (1998)) with h(p) = np ln np
and ρ(ξ) = −exp(ξ); and the continuous updating estimator as h(p) = (np)2 and ρ(ξ) =
−(1 + ξ)2/23.

An additional class of estimators which do not belong directly to the class of EL or minimum
contrast estimators, but which is obtained by combining the empirical likelihood estimator
and the ET estimator, is the ETEL estimator proposed by Schennach (2007). This estimator
is defined as:

(25) θ̂ = argmin
θ

(
n−1

n∑

i=1

h̃(pt(θ))

)
,

where g̃i(θ) is the solution of:

(26) min
{gi}

n

i=1

n−1
n∑

i=1

h(pt)

subject to
∑n

i=1 ptg(θ, yt) = 0 and
∑n

i=1 pt = 1, with h̃(p̂t) = −ln(npt) and h(pt) =
nptln(npt).

Note that the ETEL estimator employs the ET method to find the probabilities p̂i(θ), and

the EL method to estimate the parameter vector θ̂. These probabilities are related to the
multipliers λ by the relation:

(27) p̂t(θ) =

(
λ̂(θ)′g(θ, yt)

)

∑n
i=1

(
λ̂(θ)′g(θ, yt)

) .

An important property of the estimators of ETEL class is their behavior in the presence of
incorrect specification. Imbens et al. (1998) point out that the EL estimator can display inad-
equate behavior in the presence of incorrect specification due to the presence of a singularity in
its influence function, and, according to theorem 1 in Smith (2001), the asymptotic properties
of the EL estimator can be severely weakened in the presence of minimum specification prob-
lems. This also affects the estimations of the implicit probabilities, because, in the presence
of specification problems, the implicit probabilities in likelihood problems tend to concentrate
on the extreme observations, in opposition to what is expected in a robust estimator in Huber

3See Table 1 Smith (2001) for more details.
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(1981) and Hampel et al. (1986)’s sense, which should minimize the importance of extreme
observations in the construction of an estimator.

We will now summarize some common properties of the estimators discussed in this study.
The first property is that all the estimators employed (two-stage GMM, iterative GMM, GMM
continuous updating, GEL, ET, and ETEL) have the same properties of consistency and first
order asymptotic efficiency (e.g. Smith (2001), Schennach (2007)), and in the validity of
moment conditions all the estimators have the same asymptotic variance. However, their
performance in finite samples can be quite different. The two-stage GMM estimator can be
severely biased in sample sizes employed in economics and finance, and continuous updating
estimators are numerically unstable due to the presence of multiple modes in the objective
function (e.g. Hansen et al. (1996)). Another interesting property is that estimators based on
GMC and GEL are invariant to linear transformations in the vector of moment conditions,
which does not occur in the two-stage GMM estimator. Estimators based on generalized
empirical likelihood/minimum contrast are efficient in the semi-parametric sense of Bickel
et al. (1993), and have superior properties in terms of higher order asymptotic bias. These
estimators also present optimum properties in terms of hypotheses testing. As demonstrated
by Kitamura (2006), these tests are optimum in the minimax and large deviations criteria,
and are uniformly more powerful in the generalized sense of Neyman-Pearson.

A fundamental point is that in the EL and minimum contrast estimators based on the
Cressie-Read discrepancy, the bias in finite samples does not grow with the number of moment
conditions used. This property makes it possible for the efficiency of the estimators to be
obtained with the use of a high number of moment conditions, without implying an increase
in the bias in the finite samples as occurs in the use of the GMM estimator, which leads to
the problem of the inferior performance of this method in comparison with other forms of
estimation.

The result obtained by Smith (2001) is that in the class of minimum contrast/empirical like-
lihood estimators, the only estimator with adequate behavior in the presence of specification
problems is the ET estimator, because its influence function does not present singularities. The
ETEL estimator is a combination of the EL estimator and the EL estimator, and it maintains
the EL estimator’s characteristics of asymptotic efficiency and minimum bias. Additionally,
it inherits the robustness in the presence of specification problems, due to the use of the
ET estimator to estimate implicit probabilities, as demonstrated by theorems 8-10 in Smith
(2001), who proves that this estimator is

√
n convergent even in the presence of specification

problems.
Estimators for the parameters of the parametric part of the model and for the implicit

probabilities can be obtained by numeric optimization or via quasi-Newton iterative methods.
These methods can be formulated in a problem of smaller dimension using a dual formulation
(Kitamura (2006)) through the numeric optimization employing Lagrange multipliers defined
by equations 21 and 27, which is the general form used in this study.

Note that in the estimation of SV models we are subject to the same problem of using non-
differentiable moment conditions due to the use of absolute moments. This problem impedes
the simple use of iterative methods for the estimation of Lagrange multipliers proposed by
Kitamura (2006), and thus, in these cases, we need to use the same techniques of numeric
optimization with the interpolation in the vicinity of the discontinuity points discussed in the
estimation by GMM.
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5. Monte Carlo Studies

The performance of the proposed estimators is analyzed through a series of Monte Carlo
studies, with the purpose of verifying the performance of each estimator in different parameter
configurations, sample sizes, moment conditions employed, and robustness in the presence of
specification problems and outliers. In order to analyze these problems, we worked with three
parameter configurations for each experiment performed. These configurations follow the
same configurations employed in the articles by Jacquier et al. (1994), Andersen and Sorensen
(1996) and Takada (2009). The set of simulated models correspond to the parameters (α, β, σ)
given by (-0.736, .9, .3629), (-0.368, .95, .26) and (-.1472, .98, .1657). This choice is justified
in the study by Jacquier et al. (1994) where these configurations are considered as generating
the same unconditional variance but with distinct persistence configurations.

In the first analysis, we performed the estimation of the reference models (Gaussian inno-
vations in the mean and volatility equations and without outlier) using the estimators defined
previously. For each parameter vector we carried out 1,000 replications. The sample size will
be equal to 500 in all cases except in the analysis of the sample size effects. Each simulated
series was estimated by the following methods: two-stage GMM (GMM2S), Iterative GMM
(GMMITER), GMM Continuous Updating (GMMCUE), GEL, ET and ETEL, as well as the
versions with smoothed moments of these three last estimators (SGEL, SET and SETEL).

Tables 1, 2 and 3 show the estimation results of these reference models with three parameter
configuration; each table presenting the mean, the bias, mean squared error (MSE), and mean
absolute error (MAE) of each parameter estimator. In order to ease the visualization of the
results, we shown in Figure 1 the MSE and MAE of each estimator for each parameter. In
terms of mean quadratic error and mean absolute error generally the estimators based on
EL and GMC are much superior to those obtained by estimators based on GMM, and this
superiority is valid for all the three parameters estimated in all parameter configurations.
This result gives support to the use of these methods as competitive methodologies in the
estimation of SV models.

Although the straight comparison in this article is performed with estimators using the
same moment conditions, due to the use of the same parameter configuration of other studies,
it is possible to compare the results obtained with other estimation methodologies. The results
obtained are directly comparable with those analyzed in Takada (2009)’s article, who proposed
an estimator for SV models employing simulated Minimum Hellinger Distances, comparing
this method with other methodologies, such as the efficient method of moments (EMM),
MCMC, and maximum likelihood Monte Carlo.

Table 1 in Takada (2009) shows the results for these estimators’ MSE for the first parameter
vector studied, for a sample of size 500. The results of a direct comparison with the results
presented in this table indicate that the estimators based on GEL/GMC are superior to
the following methods in terms of MSE: SMHD (Simulated Minimum Hellinger Distance),
EMM (Efficient Method of Moments) and MCMC. They also have a superior or equivalent
performance to the MCML (Monte Carlo Maximum Likelihood) estimators by the criterion
of mean quadratic error. In comparison with the results of that article, we notice that the
results of all the estimators based on GEL/GMC are superior to all these methods, except for
the estimation of α where the estimators obtain a mean quadratic error equal to the MCML
estimator.

In this comparison it is important to notice that the GEL/GMC estimators do not require
Monte Carlo simulation procedure, and are computationally simpler than these methods,
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indicating that the use of EL and MC makes it possible to obtain superior properties in finite
samples when compared with the methods so far considered as the most efficient in the SV
model estimation, with a noticeably smaller computational and implementation cost.

5.1. Effect of Sample Size and Set of Instruments. In order to verify the effect of the
sample size in the estimators’ performance, we carried out an analysis with the estimation of
the parameter vectors studied with samples of size 250 (Tables 4, 5 and 6) and 1,000 (Tables
7, 8 and 9) and employing the 24 moment conditions defined by equation 3. As expected,
the increase in the sample size decreases the MSE and MAE of all the estimators, but with
different effects for each parameter configuration of and estimation method. Summarizing
these results, we show in Figure 2 the relative efficiency, defined as a ratio between the MSE
of the sample of size 250 and the MSE of sample size 1,000 for each configuration.

Except for the GEL estimator in parameter configuration 2, with efficience rate inferior to
one, there is a real gain in terms of MSE for all the parameters. This particular result for
the GEL estimator in this configuration can be explained by the greater convergence difficulty
noted in this particular configuration, but it is important to note that, in the version with
smoothed moments, this estimator behaves as expected.

As can be seen in Figure 2, the sample size has heterogeneous effects for each estimator, de-
pending on the parameter configuration. The estimators based on GEL/GMC with smoothed
moments have greater gain in the configuration with smaller persistence while those based
on GMM behave in the opposite way. This result can be interpreted by the fact that the
smoothing of moments is more efficient when the volatility persistence is smaller.

As previously discussed, the main theoretical motivation for the use of estimators based on
GEL/GMC lies in the possibility of using a larger number of moment conditions to achieve a
more efficient estimation, since the finite samples bias in these methods does not grow with
the number of moment conditions, as occurs with GMM estimators. In order to verify this
property, we employ a new estimation with a subset of the moment conditions vector, now
working with 14 moment conditions only, according to Eq. 4, instead of the original 24 moment
conditions given by Eq. 3.

The results of this comparison are displayed in Tables 10, 11 and 12, and the comparisons
between estimators employing MSE and MAE with the use of 14 moment conditions are placed
in Figure 3. We can note that in this configuration the GEL/GMC estimators still display a
superior performance in comparison with those based on GMM, but now this performance is
not as superior as in the configuration with 24 moment conditions, which gives support to the
conjecture of a superior use of the moment conditions in terms of bias and variance for the
estimators of GEL/GMC class.

Figure 4 presents the relative efficiency between MSE using 14 moments and the estimator
with 24 moments. For the GMM estimators the efficiency presents modest increases or reduc-
tions increasing the number of instruments, similarly to the results obtained in the studies
by Andersen and Sorensen (1996). However there are, in general, very significant efficiency
gains in MSE for the estimators based on GEL/GMC, reaching values over 200 times in the
second parameter configuration. Nevertheless, for the third parameter configuration, we can
observe that the estimation with a number of moment conditions represents a reduction in
the relative efficiency of all the methods for the estimators of α and β.

5.2. Student-t Distribution (4) in the mean innovations. As previously discussed, al-
though the SV log-normal model is defined by moments of a log-normal distribution, it can
be interpreted in a semi-parametric form as an autoregressive model for the exponential of
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the volatility process, without the need for a distribution specification for the innovation pro-
cesses (e.g. Francq and Zakoïan (2006), Renault (2009)). However, as we are employing these
theoretical moments assuming the distribution specification of innovations in the construction
of the moment conditions, it is important to verify whether alternative specifications signifi-
cantly alter the properties of the estimators in finite samples. It is particularly interesting to
verify if, consistently with what is observed for financial series, heavy-tailed processes affect
these estimators.

The first analysis undertaken was to replace the standard Gaussian distribution in the
innovations of the mean process for a Student-t distribution with 4 degrees of freedom. This
choice was purposely made with the aim of verifying the effect of a distribution with heavier
tails on the estimation of SV models. Note that, as we are employing higher moments, the
heavy-tail effect can be magnified in the estimation, since now each observation is raised to
potencies of second, third and fourth orders. We particularly use this number of 4 degrees
of freedom in Student-t to have a distribution with non-finite kurtosis and, consequently, to
have a robustness test under extreme conditions.

Tables 13, 14 and 15 show the results of this experiment using 24 moment conditions and
Tables 16, 17 and 18, using 14 moment conditions. It can be seen that in this situation the
estimators based on GMC/GEL clearly maintain their dominance over the estimators based
on GMM, as it becomes more evident in Figures 5 and 6, which show MSE and MAE of each
estimator, and once again we have the same result of best performance in this situation of the
GEL/GMC-based estimators.

In order to verify whether in this case it is still advantageous to work with a larger set
of instruments Figure 7 shows the ratio of the MSEs between the estimators with 14 and 24
moment conditions. The results show that in this situation the increase in the number of
instruments can impair the performance of the estimators, and this effect occurs both for the
GMM estimators and for the GEL/GMC estimators, although the effect is heterogeneous in
terms of the configuration and of the parameter analyzed. In the situation of lower persis-
tence, it is advantageous to work with the larger number of instruments for the GEL/GMC
estimators, but this result is not maintained in the other parameter configurations, and par-
ticularly in the configuration with high persistence, the use of the larger set of instruments
causes almost a general degradation in the performance of all the methods.

5.3. Student-t Distribution (4) in the volatility innovations. In the next experiment,
we modified the data generating process, assuming now that the innovation process in the
volatility equation is given by a Student-t process with 4 degrees of freedom, assuming in this
case the usual supposition of Gaussian innovations in the mean equation. Note that, in this
configuration, the effects are expected to be more harmful, since now the effect of heavier tails
is directly spread by the volatility equation’s autoregressive structure, unlike the previous case
where the heavy-tailed innovations affected the mean equation, which was a process without
correlation.

Tables 19, 20 and 21 show the results obtained with 24 moment conditions, and Tables 22,
23 and 24 show the results obtained with 14 moment conditions. These results are summa-
rized in Figures 8 and 9. We note that these heavier tailed innovations effectively damage the
performance of the GMM-based estimators, and moderately damage the GEL-based estima-
tors. In this experiment, the robustness properties of the methods based on ET and ETEL
become evident, and these methods generally have a superior performance in comparison with
the other methods. For example, the ratio between MSE for α estimated by Iterative GMM
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and by the smoothed ETEL method has a value of 5102.984 for the first parameter configura-
tion, showing the dominance of these methods in this situation of incorrect specification. As
previously discussed, this robustness property is derived from the bounded influence function
of the estimators based on ET, and it proves to be quite important in this situation. As
financial data is characterized by heavy tails, we have an additional justification for the use
of the estimators proposed in this study.

Likewise, we can verify the effects of using a number of moment conditions in this con-
figuration. Figure 10 shows the relative efficiency effects of the estimators obtained with the
increase in the number of instruments from 14 to 24. However, in this configuration, we have
mixed results because for the first parameter configuration there is a general gain in the esti-
mators - though more noticeable for the estimators based on GEL/GMC -, but for the other
configurations there are losses, particularly in the estimation of the volatility parameter σ in
the second configuration.

5.4. Experiment 4 - Level Outlier. In order to verify the effects of aberrant observations
(outliers) in the process of stochastic estimation, we undertook two classes of experiments. In
this part of our study we will verify the effect of the so-called level outliers (in Hotta and Tsay
(1998)’s nomenclature) in the estimation of SV models. In this experiment the generating
process is given by:

(28) yt = σtεt + LOt

(29) logσ2
t = α+ βlogσ2

t−1 + σut,

where LOt is a binary variable with positive value of 5 standard deviations of the process
if the observation is carried out in the period t=251, and zero in the other observations. Note
that in this experiment the outlier do not affect the persistence in the volatility process. The
results of this experiment are displayed in Tables 25, 26 and 27 for the set of 24 moments;
and in Tables 28, 29 and 30 for the set of 14 moments; and the results of MSE and MAE are
summarized in Figures 11 and 12. We observe a better performance of the estimators based on
GEL/GMC, particularly those employing the ET method for the calculation of the Lagrange
multipliers. For example, the ratio of 260.8 between the MSE of the GMM Iterative estimator
and the smoothed ET estimator of α in the parameter configuration 3 supports the evidence
that the robustness properties of this class of estimators have advantages in the estimation of
SV models. The performance of these estimators is more noticeable in the situation of longer
volatility persistence, given by parameter vector 3.

It is not possible, however, to identify a clear effect of the number of moment conditions
in this experiment, since the effects are similar to those occurred in the previous experiments
with heavy-tailed innovations. As per Figure 13, the relative efficiency between 14 and 24
moment conditions, for parameter vectors 2 and 3 indicates that the increased number of
instruments represent a loss in performance in most cases, particularly for the estimation of
parameter σ.

5.5. Experiment 5 - Volatility Outlier. In the last specification tested, we verified the
effect of a so-called volatility outlier (as named by Hotta and Tsay (1998)) in the estimation.
In this experiment, the data generating process is given by:
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(30) yt = σtεt

(31) logσ2
t = α+ βlogσ2

t−1 + σut + V Ot,

where V Ot is a binary variable with positive value of 5 standard deviations in observation
251 of the volatility equation and zero in the other observations. In this situation, there is
a direct propagation of the effects of the outlier in the volatility because now the effect is
directly transmitted by the autoregressive structure in the volatility equation, whereas the
effect was indirect in the case of a level outlier.

Tables 31, 32 and 33 (estimation with 24 moments) and 34, 35 and 36 (estimation with 14
moments) show the results of estimations which can be summarized by Figures 14 and 15 with
the MSE and MAE results. As per previous experiments, the GEL/GMC-based estimators
have in general a superior performance in comparison with the GMM-based methods, and
show that the same properties of robustness remain valid in this volatility outlier situation,
which would be potentially more serious for the estimation of volatility parameters.

The effect of the larger number of instruments in this situation can be seen in Figure 16,
which indicates that there is an efficiency gain with a higher number of instruments in the
situation with low persistence; however, for situations with higher volatility persistence, the
additional instruments generally present noticeable deterioration in the estimators’ MSE.

6. Conclusions

In this study we discussed the estimation of SV models using estimators based on gener-
alizations of the empirical likelihood and minimum contrast methods. The performance of
these estimators, as shown by a set of Monte Carlo experiments, proved to be superior to
the estimation methods based on generalized method of moments, and also superior to the
methods based on simulation such as MCMC and Monte Carlo maximum likelihood as studied
in Takada (2009).

The results obtained in this study are consistent with those obtained by other studies (e.g.
Newey and Smith (2004)), which demonstrate that alternative estimators based on moments,
formulated as GEL/GMC-based estimators, display superior performance, nullifying the bias
problems occurring in the usual GMM estimators. The proposed estimators manage to obtain
superior properties in finite samples by a better use of the informational content present in the
moment conditions, since the higher efficiency is obtained not only by means of weighting by
the estimators’ variance - as in the case of GMM estimators - but also by the non-parametric
estimation of the likelihood function of the process, as discussed in Antoine et al. (2007).
Another related property lies in the fact that the bias of these estimators does not grow with
the number of moment conditions, as happens in the case of GMM estimators. Thus, it is
possible to obtain efficiency properties by using an adequate number of moment conditions.
This characteristic can be particularly important in the estimation of multivariate SV models,
in which the number of moment conditions is proportional to the number of series studied.
As the estimation of multivariate SV models still represents a great computational challenge,
(e.g. Chib et al. (2009)), the estimation by methods based on empirical likelihood/minimum
contrast can be an efficient alternative to be explored.

These results are particularly interesting because the implementation of the methods dis-
cussed in this study is computationally simpler than the implementation of methods based on
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simulation, requiring just one specification of the moment conditions of stochastic volatility
processes. Although this study is based on the specification of the log-normal SV model, it is
important to note that this procedure can be generalized by using the methodology proposed
by Meddahi (2001), which makes possible the automatic generation of moment conditions for
processes that belong to the so-called SV-eigenfunctions family.

Another important characteristic is related to robustness properties and specification prob-
lems, particularly of the methods based on ET, which, due to properties in their influence
function, manage to be

√
n consistent even in the presence of specification problems. This

property is particularly important in the presence of processes of heavy-tail innovations, as
verified in this study by the use of a Student-t distribution with non-finite kurtosis, or else in
the presence of level or volatility outliers.
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Appendix - Tables

GMM2S GMMITER GMMCUE GEL ET ETEL SGEL SET SETEL

mean α -0.700191 -0.608924 -0.569311 -0.729763 -0.730008 -0.728858 -0.732023 -0.730267 -0.727510

bias α 0.035809 0.127076 0.166689 0.006237 0.005992 0.007142 0.003977 0.005733 0.008490

mse α 0.495912 0.827004 0.383436 0.000723 0.000105 0.000229 0.002954 0.000148 0.000431

mae α 0.494248 0.686760 0.466081 0.016242 0.007843 0.011289 0.014323 0.008779 0.011775

mean β 0.905908 0.918369 0.923634 0.902438 0.901313 0.901860 0.901165 0.901239 0.901681

bias β 0.005908 0.018369 0.023634 0.002438 0.001313 0.001860 0.001165 0.001239 0.001681

mse β 0.008939 0.014804 0.006909 0.000019 0.000005 0.000009 0.000049 0.000007 0.000013

mae β 0.066857 0.092551 0.063312 0.003243 0.001806 0.002431 0.002724 0.001962 0.002344

mean σ 0.236795 0.158262 0.170565 0.386721 0.387840 0.380383 0.378491 0.383913 0.376488

bias σ -0.126105 -0.204638 -0.192335 0.023821 0.024940 0.017483 0.015591 0.021013 0.013588

mse σ 0.039156 0.067792 0.053258 0.001503 0.001488 0.001911 0.002134 0.001700 0.002037

mae σ 0.168891 0.234061 0.207049 0.031779 0.033321 0.035319 0.037523 0.035307 0.036788

Table 1. Reference SV Model Sample Size 500 - α=-0.736 β=.9 σ=.3629, T=500

GMM2S GMMITER GMMCUE GEL ET ETEL SGEL SET SETEL

mean α -0.323798 -0.300172 -0.520061 -0.371048 -0.366947 -0.369468 -0.367388 -0.366799 -0.367850

bias α 0.044202 0.067828 -0.152061 -0.003048 0.001053 -0.001468 0.000612 0.001201 0.000150

mse α 0.209281 0.375829 0.034725 0.000468 0.000219 0.000250 0.000331 0.000225 0.000631

mae α 0.311453 0.394674 0.156372 0.012824 0.010469 0.011898 0.012324 0.011163 0.013191

mean β 0.956477 0.959678 0.930090 0.950147 0.950309 0.950104 0.950271 0.950331 0.950167

bias β 0.006477 0.009678 -0.019910 0.000147 0.000309 0.000104 0.000271 0.000331 0.000167

mse β 0.003805 0.006868 0.000635 0.000008 0.000004 0.000005 0.000006 0.000004 0.000010

mae β 0.042185 0.053324 0.020561 0.001767 0.001443 0.001708 0.001526 0.001395 0.001681

mean σ 0.146227 0.098469 0.198858 0.265285 0.272920 0.262856 0.258772 0.269163 0.257539

bias σ -0.113773 -0.161531 -0.061142 0.005285 0.012920 0.002856 -0.001228 0.009163 -0.002461

mse σ 0.027740 0.040511 0.004846 0.001597 0.001578 0.001870 0.002119 0.001679 0.002234

mae σ 0.142769 0.182002 0.061584 0.031468 0.033283 0.034507 0.037988 0.034831 0.039488

Table 2. Reference SV Model Sample Size 500 - α=-0.368 β=.95 σ=.26

GMM2S GMMITER GMMCUE GEL ET ETEL SGEL SET SETEL

mean α -0.148610 -0.153037 -0.161124 -0.177110 -0.167514 -0.166558 -0.182551 -0.168109 -0.170785

bias α -0.001410 -0.005837 -0.013924 -0.029910 -0.020314 -0.019358 -0.035351 -0.020909 -0.023585

mse α 0.122958 0.180502 0.007471 0.002719 0.000792 0.000865 0.004335 0.001014 0.002519

mae α 0.185981 0.222997 0.033918 0.031699 0.020929 0.020838 0.038433 0.021868 0.025349

mean β 0.980010 0.979486 0.979135 0.976228 0.977244 0.977427 0.975315 0.977149 0.976785

bias β 0.000010 -0.000514 -0.000865 -0.003772 -0.002756 -0.002573 -0.004685 -0.002851 -0.003215

mse β 0.002228 0.003236 0.000131 0.000043 0.000017 0.000017 0.000073 0.000023 0.000048

mae β 0.025133 0.030039 0.003657 0.004043 0.002837 0.002788 0.005116 0.002971 0.003441

mean σ 0.078125 0.055286 0.148443 0.169463 0.170654 0.160767 0.167593 0.169098 0.160081

bias σ -0.087575 -0.110414 -0.017257 0.003763 0.004954 -0.004933 0.001893 0.003398 -0.005619

mse σ 0.016178 0.020346 0.001544 0.001591 0.001388 0.001523 0.001909 0.001439 0.001613

mae σ 0.115562 0.133223 0.017375 0.031635 0.029684 0.030572 0.035919 0.029612 0.032264

Table 3. Reference SV Model Sample Size 500 - α-.1472 β=.98 σ=.1657

Reference SV Model - Sample Size 500.
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GMM2S GMMITER GMMCUE GEL ET ETEL SGEL SET SETEL

mean α -0.845827 -0.840909 -0.672729 -0.736400 -0.728755 -0.727990 -0.730019 -0.729343 -0.726712

bias α -0.109827 -0.104909 0.063271 -0.000400 0.007245 0.008010 0.005981 0.006657 0.009288

mse α 0.944574 2.522021 1.339914 0.004713 0.000205 0.000555 0.000448 0.000775 0.001030

mae α 0.568116 0.956395 0.602316 0.023396 0.010023 0.015524 0.013468 0.012361 0.016576

mean β 0.887361 0.889161 0.910046 0.901653 0.901630 0.902274 0.901814 0.901582 0.902088

bias β -0.012639 -0.010839 0.010046 0.001653 0.001630 0.002274 0.001814 0.001582 0.002088

mse β 0.016784 0.043542 0.023987 0.000080 0.000009 0.000016 0.000015 0.000020 0.000028

mae β 0.076241 0.127159 0.081218 0.004287 0.002298 0.003158 0.002857 0.002684 0.003380

mean σ 0.255995 0.139735 0.143907 0.383615 0.385449 0.377069 0.377577 0.383512 0.370742

bias σ -0.106905 -0.223165 -0.218993 0.020715 0.022549 0.014169 0.014677 0.020612 0.007842

mse σ 0.042192 0.079458 0.067077 0.002284 0.001830 0.002593 0.002906 0.002043 0.003781

mae σ 0.170713 0.256598 0.237429 0.037310 0.036526 0.040098 0.041506 0.038537 0.046534

Table 4. Reference SV Model Sample Size 250 - α=-0.736 β=.9 σ=.3629

GMM2S GMMITER GMMCUE GEL ET ETEL SGEL SET SETEL

mean α -0.453177 -0.510670 -0.582461 -0.369508 -0.365449 -0.367953 -0.367438 -0.365712 -0.366300

bias α -0.085177 -0.142670 -0.214461 -0.001508 0.002551 0.000047 0.000562 0.002288 0.001700

mse α 0.472332 1.448096 0.080215 0.000396 0.000215 0.000345 0.001415 0.000261 0.001354

mae α 0.392820 0.621217 0.219123 0.013576 0.010837 0.012862 0.016954 0.011440 0.016981

mean β 0.939239 0.932243 0.921192 0.950571 0.950596 0.950449 0.950410 0.950571 0.950487

bias β -0.010761 -0.017757 -0.028808 0.000571 0.000596 0.000449 0.000410 0.000571 0.000487

mse β 0.008842 0.025796 0.001543 0.000007 0.000005 0.000007 0.000024 0.000006 0.000023

mae β 0.053047 0.082917 0.029686 0.002000 0.001679 0.002015 0.002288 0.001694 0.002338

mean σ 0.171005 0.093941 0.178377 0.262543 0.272532 0.258514 0.255426 0.269208 0.252188

bias σ -0.088995 -0.166059 -0.081623 0.002543 0.012532 -0.001486 -0.004574 0.009208 -0.007812

mse σ 0.028943 0.047305 0.009177 0.002206 0.001896 0.002725 0.003091 0.002087 0.003352

mae σ 0.142804 0.200365 0.082031 0.036923 0.036060 0.041672 0.045007 0.038874 0.047074

Table 5. Reference SV Model, Sample Size 250 - α=-0.368 β=.95 σ=.26

GMM2S GMMITER GMMCUE GEL ET ETEL SGEL SET SETEL

mean α -0.287550 -0.358624 -0.178688 -0.184597 -0.174181 -0.172286 -0.184011 -0.175501 -0.178481

bias α -0.140350 -0.211424 -0.031488 -0.037397 -0.026981 -0.025086 -0.036811 -0.028301 -0.031281

mse α 0.480456 1.419835 0.036347 0.003332 0.001820 0.002089 0.004401 0.002261 0.002978

mae α 0.290438 0.426097 0.052332 0.039280 0.027872 0.026591 0.040621 0.029496 0.033409

mean β 0.961360 0.951781 0.976673 0.975317 0.976275 0.976645 0.975205 0.976093 0.975689

bias β -0.018640 -0.028219 -0.003327 -0.004683 -0.003725 -0.003355 -0.004795 -0.003907 -0.004311

mse β 0.008904 0.025951 0.000614 0.000053 0.000046 0.000051 0.000067 0.000056 0.000068

mae β 0.039143 0.057390 0.006172 0.005015 0.003846 0.003566 0.005370 0.004078 0.004620

mean σ 0.099607 0.058895 0.147883 0.162567 0.165318 0.152367 0.154270 0.165148 0.149183

bias σ -0.066093 -0.106805 -0.017817 -0.003133 -0.000382 -0.013333 -0.011430 -0.000552 -0.016517

mse σ 0.018376 0.022620 0.003918 0.002296 0.002296 0.002485 0.002566 0.002073 0.002865

mae σ 0.117220 0.138037 0.022491 0.038325 0.037033 0.038657 0.041356 0.035026 0.041933

Table 6. Reference SV Model, Sample Size 250 - α-.1472 β=.98 σ=.1657

Reference SV Model - Sample Size 250.
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GMM2S GMMITER GMMCUE GEL ET ETEL SGEL SET SETEL

mean α -0.657239 -0.655518 -0.646651 -0.732105 -0.731168 -0.728442 -0.731064 -0.728545 -0.730313

bias α 0.078761 0.080482 0.089349 0.003895 0.004832 0.007558 0.004936 0.007455 0.005687

mse α 0.324049 0.448948 0.321806 0.000529 0.000103 0.000284 0.000186 0.000103 0.000182

mae α 0.431807 0.524950 0.412616 0.013323 0.007189 0.011075 0.009587 0.007935 0.009229

mean β 0.911393 0.911682 0.912914 0.901757 0.901142 0.901871 0.901144 0.901450 0.901280

bias β 0.011393 0.011682 0.012914 0.001757 0.001142 0.001871 0.001144 0.001450 0.001280

mse β 0.005944 0.008215 0.005888 0.000011 0.000004 0.000009 0.000007 0.000005 0.000007

mae β 0.058491 0.070958 0.056019 0.002499 0.001646 0.002257 0.002140 0.001763 0.002053

mean σ 0.246982 0.220967 0.227270 0.381270 0.386004 0.377610 0.374018 0.380753 0.376954

bias σ -0.115918 -0.141933 -0.135630 0.018370 0.023104 0.014710 0.011118 0.017853 0.014054

mse σ 0.029136 0.041257 0.034827 0.001272 0.001388 0.001484 0.001415 0.001299 0.001300

mae σ 0.146245 0.173349 0.158733 0.027994 0.031482 0.030527 0.031812 0.031192 0.030416

Table 7. Reference SV Model, Sample Size 1000 - α=-0.736 β=.9 σ=.3629

GMM2S GMMITER GMMCUE GEL ET ETEL SGEL SET SETEL

mean α -0.300991 -0.300362 -0.476716 -0.372371 -0.369634 -0.371808 -0.368965 -0.368831 -0.369742

bias α 0.067009 0.067638 -0.108716 -0.004371 -0.001634 -0.003808 -0.000965 -0.000831 -0.001742

mse α 0.108547 0.154086 0.016805 0.000462 0.000154 0.000212 0.000287 0.000194 0.000300

mae α 0.248294 0.300398 0.110979 0.011809 0.009061 0.010973 0.010886 0.009801 0.010868

mean β 0.959360 0.959477 0.935880 0.949738 0.949870 0.949686 0.949956 0.949983 0.949848

bias β 0.009360 0.009477 -0.014120 -0.000262 -0.000130 -0.000314 -0.000044 -0.000017 -0.000152

mse β 0.002000 0.002828 0.000297 0.000008 0.000003 0.000004 0.000005 0.000003 0.000005

mae β 0.033712 0.040665 0.014485 0.001599 0.001237 0.001470 0.001397 0.001205 0.001375

mean σ 0.156376 0.134259 0.215652 0.264582 0.270840 0.264941 0.260428 0.269523 0.261419

bias σ -0.103624 -0.125741 -0.044348 0.004582 0.010840 0.004941 0.000428 0.009523 0.001419

mse σ 0.020798 0.028795 0.002460 0.001239 0.001213 0.001342 0.001352 0.001238 0.001391

mae σ 0.122116 0.146295 0.044402 0.027305 0.029037 0.029162 0.030043 0.029670 0.030514

Table 8. Reference SV Model, Sample Size 1000 - α=-0.368 β=.95 σ=.26

GMM2S GMMITER GMMCUE GEL ET ETEL SGEL SET SETEL

mean α -0.114335 -0.119373 -0.150316 -0.173171 -0.164059 -0.163896 -0.174346 -0.164044 -0.165767

bias α 0.032865 0.027827 -0.003116 -0.025971 -0.016859 -0.016696 -0.027146 -0.016844 -0.018567

mse α 0.043901 0.058947 0.004958 0.001341 0.000497 0.000473 0.001637 0.000563 0.001227

mae α 0.146038 0.166462 0.022415 0.027646 0.017471 0.017493 0.029596 0.017999 0.020478

mean β 0.984552 0.983893 0.980499 0.976673 0.977706 0.977774 0.976394 0.977703 0.977488

bias β 0.004552 0.003893 0.000499 -0.003327 -0.002294 -0.002226 -0.003606 -0.002297 -0.002512

mse β 0.000818 0.001091 0.000081 0.000021 0.000010 0.000009 0.000027 0.000012 0.000023

mae β 0.019818 0.022531 0.002246 0.003557 0.002355 0.002325 0.003912 0.002425 0.002743

mean σ 0.078361 0.066519 0.150921 0.174408 0.171587 0.167460 0.173789 0.171004 0.167570

bias σ -0.087339 -0.099181 -0.014779 0.008708 0.005887 0.001760 0.008089 0.005304 0.001870

mse σ 0.013792 0.016902 0.001312 0.001195 0.000971 0.000976 0.001379 0.000960 0.001094

mae σ 0.104885 0.118200 0.015356 0.026957 0.024514 0.024630 0.029696 0.024281 0.026283

Table 9. Reference SV Model, Sample Size 1000 - α-.1472 β=.98 σ=.1657

Reference SV Model - Sample Size 1000.
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GMM2S GMMITER GMMCUE GEL ET ETEL SGEL SET SETEL

mean α -0.387790 -0.329887 -0.392345 -0.706187 -0.583088 -0.705202 -0.734080 -0.688249 -0.737702

bias α 0.348210 0.406113 0.343655 0.029813 0.152912 0.030798 0.001920 0.047751 -0.001702

mse α 0.407410 0.529764 0.448516 0.030564 0.135697 0.059130 0.018108 0.298280 0.003793

mae α 0.500311 0.579126 0.488393 0.075290 0.240673 0.100716 0.035211 0.243153 0.015571

mean β 0.947847 0.955695 0.947246 0.904431 0.920801 0.905838 0.901287 0.907336 0.901759

bias β 0.047847 0.055695 0.047246 0.004431 0.020801 0.005838 0.001287 0.007336 0.001759

mse β 0.007420 0.009644 0.008133 0.000573 0.002498 0.001141 0.000342 0.005458 0.000083

mae β 0.067970 0.078549 0.066343 0.010849 0.033067 0.015050 0.005682 0.033610 0.003415

mean σ 0.177854 0.141572 0.166061 0.345979 0.256893 0.384320 0.376598 0.293342 0.398028

bias σ -0.185046 -0.221328 -0.196839 -0.016921 -0.106007 0.021420 0.013698 -0.069558 0.035128

mse σ 0.053409 0.071263 0.057475 0.006115 0.023314 0.006100 0.003235 0.020749 0.002738

mae σ 0.204028 0.240183 0.213535 0.061064 0.125973 0.061736 0.045643 0.110763 0.044111

Table 10. Reference SV Model, Subset of Instruments - α=-0.736 β=.9 σ=.3629

GMM2S GMMITER GMMCUE GEL ET ETEL SGEL SET SETEL

mean α -0.176010 -0.167857 -0.424666 -0.371692 -0.361446 -0.367182 -0.372239 -0.362772 -0.367428

bias α 0.191990 0.200143 -0.056666 -0.003692 0.006554 0.000818 -0.004239 0.005228 0.000572

mse α 0.226799 0.303138 0.012526 0.000276 0.000203 0.000169 0.000345 0.000091 0.000117

mae α 0.323536 0.349715 0.070120 0.010155 0.010376 0.008243 0.012456 0.006924 0.006971

mean β 0.976343 0.977480 0.942910 0.951056 0.951271 0.950586 0.951122 0.951025 0.950734

bias β 0.026343 0.027480 -0.007090 0.001056 0.001271 0.000586 0.001122 0.001025 0.000734

mse β 0.004069 0.005476 0.000219 0.000010 0.000006 0.000006 0.000010 0.000003 0.000004

mae β 0.043860 0.047336 0.009105 0.002251 0.001941 0.001689 0.002211 0.001380 0.001501

mean σ 0.100259 0.081734 0.214449 0.289414 0.269170 0.284782 0.285166 0.281602 0.292884

bias σ -0.159741 -0.178266 -0.045551 0.029414 0.009170 0.024782 0.025166 0.021602 0.032884

mse σ 0.037548 0.044987 0.003587 0.001766 0.001190 0.001708 0.001545 0.001222 0.002284

mae σ 0.176449 0.195545 0.046372 0.032133 0.027369 0.030589 0.029887 0.028479 0.035764

Table 11. Reference SV Model, Subset of Instruments - α=-0.368 β=.95 σ=.26

GMM2S GMMITER GMMCUE GEL ET ETEL SGEL SET SETEL

mean α -0.089063 -0.092245 -0.146779 -0.160451 -0.160487 -0.152710 -0.158337 -0.151514 -0.154633

bias α 0.058137 0.054955 0.000421 -0.013251 -0.013287 -0.005510 -0.011137 -0.004314 -0.007433

mse α 0.074543 0.137264 0.004951 0.000839 0.000555 0.000188 0.000673 0.000117 0.000291

mae α 0.163815 0.178350 0.028959 0.017083 0.015205 0.007540 0.016316 0.006146 0.010725

mean β 0.988033 0.987660 0.980816 0.979301 0.978390 0.979612 0.979438 0.979615 0.979451

bias β 0.008033 0.007660 0.000816 -0.000699 -0.001610 -0.000388 -0.000562 -0.000385 -0.000549

mse β 0.001332 0.002385 0.000081 0.000010 0.000011 0.000003 0.000009 0.000003 0.000004

mae β 0.022137 0.024041 0.003246 0.001962 0.002243 0.001172 0.001775 0.001188 0.001340

mean σ 0.056143 0.047436 0.146157 0.196089 0.176797 0.191231 0.189516 0.186095 0.196360

bias σ -0.109557 -0.118264 -0.019543 0.030389 0.011097 0.025531 0.023816 0.020395 0.030660

mse σ 0.018120 0.020777 0.002100 0.002081 0.001214 0.001677 0.001812 0.001431 0.002110

mae σ 0.126418 0.135976 0.020115 0.033161 0.026940 0.029457 0.029030 0.028479 0.034580

Table 12. Reference SV Model, Subset of Instruments - α-.1472 β=.98 σ=.1657

Reference SV Model - Subset of Instruments.
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GMM2S GMMITER GMMCUE GEL ET ETEL SGEL SET SETEL

mean α -0.898594 -0.840806 -0.807848 -0.704411 -0.710422 -0.711583 -0.727019 -0.752694 -0.725200

bias α -0.162594 -0.104806 -0.071848 0.031589 0.025578 0.024417 0.008981 -0.016694 0.010800

mse α 0.390480 0.981390 0.843844 0.031866 0.142569 0.013417 0.002774 0.072544 0.000397

mae α 0.421985 0.677693 0.578302 0.077138 0.211659 0.044133 0.016357 0.072182 0.014560

mean β 0.880334 0.887774 0.892161 0.903264 0.902588 0.903792 0.899936 0.896904 0.900473

bias β -0.019666 -0.012226 -0.007839 0.003264 0.002588 0.003792 -0.000064 -0.003096 0.000473

mse β 0.006902 0.017631 0.015195 0.000610 0.002765 0.000260 0.000052 0.001422 0.000007

mae β 0.056283 0.090791 0.078059 0.010621 0.029255 0.006682 0.001934 0.009835 0.001803

mean σ 0.411426 0.276272 0.277088 0.365962 0.330249 0.392250 0.401249 0.387742 0.398329

bias σ 0.048526 -0.086628 -0.085812 0.003062 -0.032651 0.029350 0.038349 0.024842 0.035429

mse σ 0.035925 0.046839 0.039294 0.005068 0.012450 0.004109 0.002003 0.004555 0.001863

mae σ 0.144036 0.179405 0.162927 0.053270 0.085005 0.051261 0.041188 0.051046 0.039298

Table 13. Student t (4) Innovations in Mean - α=-0.736 β=.9 σ=.3629

GMM2S GMMITER GMMCUE GEL ET ETEL SGEL SET SETEL

mean α -0.418591 -0.409907 -0.436561 -0.366868 -0.364062 -0.366793 -0.365613 -0.364053 -0.365115

bias α -0.050591 -0.041907 -0.068561 0.001132 0.003938 0.001207 0.002387 0.003947 0.002885

mse α 0.162877 0.504704 0.016724 0.000260 0.000175 0.000259 0.000197 0.000180 0.000215

mae α 0.268665 0.420585 0.078071 0.012478 0.010332 0.012119 0.010687 0.010435 0.010866

mean β 0.944253 0.945494 0.941962 0.950021 0.950277 0.949960 0.950228 0.950265 0.950229

bias β -0.005747 -0.004506 -0.008038 0.000021 0.000277 -0.000040 0.000228 0.000265 0.000229

mse β 0.002946 0.008605 0.000312 0.000005 0.000002 0.000005 0.000003 0.000003 0.000003

mae β 0.036112 0.056316 0.009965 0.001655 0.001184 0.001629 0.001271 0.001118 0.001276

mean σ 0.258888 0.163107 0.230616 0.308080 0.304090 0.304898 0.305641 0.302799 0.303441

bias σ -0.001112 -0.096893 -0.029384 0.048080 0.044090 0.044898 0.045641 0.042799 0.043441

mse σ 0.022531 0.036115 0.002240 0.004447 0.003247 0.003896 0.004327 0.003056 0.003854

mae σ 0.120120 0.160839 0.033712 0.053685 0.047893 0.051585 0.053479 0.047292 0.051053

Table 14. Student t (4) Innovations in Mean - α=-0.368 β=.95 σ=.26

GMM2S GMMITER GMMCUE GEL ET ETEL SGEL SET SETEL

mean α -0.182803 -0.207332 -0.153876 -0.178418 -0.172451 -0.171749 -0.179504 -0.174035 -0.173768

bias α -0.035603 -0.060132 -0.006676 -0.031218 -0.025251 -0.024549 -0.032304 -0.026835 -0.026568

mse α 0.064698 0.362934 0.015031 0.001764 0.001905 0.001836 0.001910 0.002270 0.002064

mae α 0.162150 0.250030 0.023437 0.032214 0.025756 0.025222 0.033189 0.027654 0.027348

mean β 0.975580 0.972639 0.979965 0.975852 0.976312 0.976454 0.975630 0.976079 0.976160

bias β -0.004420 -0.007361 -0.000035 -0.004148 -0.003688 -0.003546 -0.004370 -0.003921 -0.003840

mse β 0.001189 0.005761 0.000260 0.000027 0.000049 0.000047 0.000031 0.000058 0.000052

mae β 0.021753 0.033207 0.002463 0.004285 0.003778 0.003645 0.004497 0.004054 0.003948

mean σ 0.141434 0.087524 0.153574 0.206849 0.202369 0.199885 0.205119 0.203117 0.200861

bias σ -0.024266 -0.078176 -0.012126 0.041150 0.036669 0.034185 0.039419 0.037417 0.035161

mse σ 0.013726 0.021573 0.001190 0.003876 0.003752 0.003589 0.003721 0.004012 0.003858

mae σ 0.099130 0.127428 0.013556 0.048306 0.044964 0.044559 0.048999 0.045614 0.045999

Table 15. Student t (4) Innovations in Mean - α-.1472 β=.98 σ=.1657

SV Model - Student-t in Mean Equation.
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GMM2S GMMITER GMMCUE GEL ET ETEL SGEL SET SETEL

mean α -0.489227 -0.409877 -0.414510 -0.645279 -0.527524 -0.688817 -0.732088 -0.636541 -0.725662

bias α 0.246773 0.326123 0.321490 0.090721 0.208476 0.047183 0.003912 0.099459 0.010338

mse α 0.294811 0.598153 0.570777 0.062880 0.157706 0.159874 0.034620 0.208947 0.001027

mae α 0.447530 0.597699 0.566140 0.135388 0.277889 0.169003 0.050133 0.260987 0.019382

mean β 0.934580 0.945279 0.944608 0.911168 0.927605 0.905506 0.899820 0.913821 0.901443

bias β 0.034579 0.045279 0.044608 0.011168 0.027605 0.005506 -0.000180 0.013821 0.001443

mse β 0.005378 0.010677 0.010224 0.001163 0.002921 0.003044 0.000682 0.003908 0.000023

mae β 0.060665 0.080809 0.076761 0.018336 0.037783 0.023940 0.006913 0.035885 0.002971

mean σ 0.290529 0.203847 0.211820 0.352261 0.299423 0.379088 0.388014 0.323308 0.398034

bias σ -0.072371 -0.159053 -0.151080 -0.010639 -0.063477 0.016188 0.025114 -0.039592 0.035134

mse σ 0.040188 0.061685 0.053119 0.009106 0.022248 0.008340 0.003194 0.019586 0.002666

mae σ 0.161437 0.214730 0.199325 0.073127 0.118990 0.069374 0.045031 0.103051 0.043476

Table 16. Student t (4) Innovations in Mean, Subset of Instruments - α=-
0.736 β=.9 σ=.3629

GMM2S GMMITER GMMCUE GEL ET ETEL SGEL SET SETEL

mean α -0.212205 -0.188704 -0.381028 -0.370669 -0.361173 -0.367182 -0.373580 -0.361736 -0.366302

bias α 0.155795 0.179296 -0.013028 -0.002669 0.006827 0.000818 -0.005580 0.006264 0.001698

mse α 0.151073 0.250103 0.004146 0.000320 0.000217 0.000351 0.000469 0.000131 0.000170

mae α 0.289612 0.348350 0.041639 0.011552 0.011170 0.011661 0.014248 0.008588 0.008391

mean β 0.971552 0.974813 0.949139 0.950362 0.950847 0.949851 0.950648 0.950749 0.950230

bias β 0.021552 0.024813 -0.000861 0.000362 0.000847 -0.000149 0.000648 0.000749 0.000230

mse β 0.002782 0.004466 0.000074 0.000012 0.000006 0.000011 0.000011 0.000004 0.000006

mae β 0.039291 0.047117 0.005421 0.002340 0.001886 0.002199 0.002342 0.001441 0.001700

mean σ 0.163153 0.114320 0.248484 0.311227 0.304519 0.310048 0.310693 0.303892 0.307685

bias σ -0.096847 -0.145680 -0.011516 0.051227 0.044518 0.050048 0.050693 0.043892 0.047685

mse σ 0.030464 0.042008 0.001299 0.004046 0.003705 0.004212 0.004070 0.002848 0.003464

mae σ 0.149490 0.184456 0.024816 0.052409 0.048864 0.051927 0.052690 0.045343 0.048842

Table 17. Student t (4) Innovations in Mean, Subset of Instruments - α=-
0.368 β=.95 σ=.26

GMM2S GMMITER GMMCUE GEL ET ETEL SGEL SET SETEL

mean α -0.074284 -0.071013 -0.150531 -0.162376 -0.166849 -0.154689 -0.158033 -0.155149 -0.153788

bias α 0.072916 0.076187 -0.003331 -0.015176 -0.019649 -0.007489 -0.010833 -0.007949 -0.006588

mse α 0.028767 0.072554 0.008817 0.000874 0.001352 0.000405 0.000949 0.000434 0.000259

mae α 0.139566 0.156468 0.026179 0.019321 0.021606 0.009982 0.017845 0.009705 0.010202

mean β 0.989995 0.990442 0.980081 0.978495 0.977240 0.978996 0.979339 0.978898 0.979279

bias β 0.009995 0.010442 0.000081 -0.001505 -0.002760 -0.001004 -0.000661 -0.001102 -0.000721

mse β 0.000533 0.001329 0.000149 0.000016 0.000033 0.000011 0.000014 0.000013 0.000005

mae β 0.018938 0.021213 0.003100 0.002503 0.003344 0.001732 0.002077 0.001849 0.001444

mean σ 0.077686 0.057410 0.154182 0.209621 0.203023 0.207680 0.206146 0.205631 0.209157

bias σ -0.088014 -0.108290 -0.011518 0.043921 0.037323 0.041980 0.040446 0.039931 0.043457

mse σ 0.015682 0.019399 0.001735 0.003441 0.003193 0.003309 0.003071 0.002986 0.003199

mae σ 0.115388 0.130757 0.018132 0.045794 0.042404 0.043876 0.042707 0.042980 0.045337

Table 18. Student t (4) Innovations in Mean, Subset of Instruments - α-.1472
β=.98 σ=.1657

SV Model - Student-t in Mean Equation - Subset of Instruments.
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GMM2S GMMITER GMMCUE GEL ET ETEL SGEL SET SETEL

mean α -2.019463 -2.019004 -1.353874 -0.719185 -0.878625 -0.718273 -0.726762 -0.874355 -0.715406

bias α -1.283463 -1.283004 -0.617874 0.016815 -0.142625 0.017727 0.009238 -0.138355 0.020594

mse α 5.053566 6.598158 3.044399 0.058803 0.680573 0.015097 0.016660 0.644231 0.001293

mae α 1.475510 1.659492 1.051613 0.099185 0.432671 0.048763 0.039363 0.277956 0.024200

mean β 0.720150 0.719250 0.811384 0.898652 0.876085 0.900611 0.897372 0.877314 0.899777

bias β -0.179850 -0.180750 -0.088616 -0.001348 -0.023915 0.000611 -0.002628 -0.022686 -0.000223

mse β 0.097458 0.128318 0.059642 0.001216 0.013893 0.000300 0.000337 0.012709 0.000020

mae β 0.205075 0.231269 0.146937 0.013264 0.060945 0.006534 0.004285 0.038086 0.002403

mean σ 0.532352 0.431597 0.357978 0.366275 0.346430 0.393303 0.397762 0.381166 0.397085

bias σ 0.169452 0.068697 -0.004922 0.003375 -0.016470 0.030403 0.034862 0.018266 0.034185

mse σ 0.109984 0.085714 0.058204 0.005314 0.023325 0.003714 0.002450 0.014768 0.001909

mae σ 0.251868 0.239819 0.198540 0.051763 0.111622 0.047475 0.043035 0.079160 0.038535

Table 19. Student t (4) Innovations in Variance - α=-0.736 β=.9 σ=.3629

GMM2S GMMITER GMMCUE GEL ET ETEL SGEL SET SETEL

mean α -1.531838 -1.505341 -0.411598 -0.363040 -0.356509 -0.360347 -0.357152 -0.355783 -0.356305

bias α -1.163838 -1.137341 -0.043598 0.004960 0.011491 0.007653 0.010848 0.012217 0.011695

mse α 4.582102 5.703206 0.006206 0.000298 0.000293 0.000355 0.000448 0.000265 0.000321

mae α 1.265176 1.353192 0.048679 0.013481 0.015033 0.015479 0.015028 0.014312 0.015145

mean β 0.786817 0.789921 0.942956 0.949416 0.949709 0.949327 0.949691 0.949781 0.949705

bias β -0.163183 -0.160079 -0.007044 -0.000584 -0.000291 -0.000673 -0.000309 -0.000219 -0.000295

mse β 0.089675 0.112105 0.000128 0.000005 0.000002 0.000005 0.000005 0.000002 0.000003

mae β 0.176775 0.189182 0.007696 0.001525 0.001065 0.001646 0.001189 0.000972 0.001124

mean σ 0.438012 0.340150 0.227405 0.294889 0.292910 0.290458 0.282838 0.292852 0.281492

bias σ 0.178012 0.080150 -0.032595 0.034889 0.032910 0.030458 0.022838 0.032852 0.021492

mse σ 0.111763 0.085479 0.001741 0.002467 0.001768 0.002375 0.001898 0.001811 0.001844

mae σ 0.241064 0.225776 0.034656 0.041202 0.037140 0.040675 0.036961 0.038883 0.037063

Table 20. Student t (4) Innovations in Variance - α=-0.368 β=.95 σ=.26

GMM2S GMMITER GMMCUE GEL ET ETEL SGEL SET SETEL

mean α -1.183910 -1.169166 -0.139778 -0.169468 -0.177636 -0.176430 -0.171889 -0.177510 -0.180039

bias α -1.036710 -1.021966 0.007422 -0.022268 -0.030436 -0.029230 -0.024689 -0.030310 -0.032839

mse α 4.167620 5.284636 0.002062 0.000871 0.003163 0.003335 0.001260 0.002726 0.003574

mae α 1.083632 1.122330 0.019276 0.022964 0.030810 0.030064 0.026382 0.030722 0.033550

mean β 0.833844 0.835416 0.981116 0.976373 0.974736 0.974993 0.975766 0.974741 0.974392

bias β -0.146156 -0.144584 0.001116 -0.003627 -0.005264 -0.005007 -0.004234 -0.005259 -0.005608

mse β 0.083851 0.106097 0.000032 0.000019 0.000090 0.000091 0.000030 0.000079 0.000099

mae β 0.152473 0.158181 0.002408 0.003689 0.005304 0.005093 0.004429 0.005307 0.005681

mean σ 0.340019 0.254258 0.148694 0.191014 0.199949 0.194585 0.182533 0.197417 0.188237

bias σ 0.174319 0.088558 -0.017006 0.025314 0.034249 0.028885 0.016833 0.031717 0.022537

mse σ 0.097556 0.071992 0.001456 0.001879 0.003394 0.003096 0.001858 0.003056 0.002708

mae σ 0.222331 0.195336 0.017893 0.033934 0.042568 0.040125 0.033289 0.041190 0.037962

Table 21. Student t (4) Innovations in Variance - α-.1472 β=.98 σ=.1657

SV Model - Student-t in Volatility Equation.
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GMM2S GMMITER GMMCUE GEL ET ETEL SGEL SET SETEL

mean α -1.624080 -1.558604 -1.060265 -0.734392 -0.676903 -0.956436 -0.853334 -1.077795 -0.725856

bias α -0.888080 -0.822604 -0.324265 0.001608 0.059097 -0.220436 -0.117334 -0.341795 0.010144

mse α 3.928852 4.590728 2.015175 0.173709 0.230651 0.815326 0.491227 1.434573 0.088954

mae α 1.200330 1.292493 0.849144 0.137095 0.238348 0.374986 0.176277 0.537670 0.045287

mean β 0.773478 0.782450 0.851910 0.896662 0.905272 0.864619 0.879744 0.849333 0.899025

bias β -0.126522 -0.117550 -0.048090 -0.003338 0.005272 -0.035381 -0.020256 -0.050667 -0.000975

mse β 0.077261 0.090068 0.039782 0.003338 0.004464 0.017650 0.009865 0.027960 0.001882

mae β 0.167782 0.180375 0.118296 0.018190 0.032246 0.054444 0.023862 0.074613 0.005793

mean σ 0.490207 0.430327 0.370190 0.380871 0.359469 0.428566 0.398392 0.407583 0.403044

bias σ 0.127307 0.067427 0.007290 0.017971 -0.003431 0.065666 0.035492 0.044683 0.040144

mse σ 0.097302 0.093233 0.060965 0.007639 0.015327 0.017199 0.006391 0.031044 0.003633

mae σ 0.226197 0.236678 0.191858 0.061614 0.091534 0.096654 0.051057 0.117093 0.048806

Table 22. Student t (4) Innovations in Variance, Subset of Instruments -
α=-0.736 β=.9 σ=.3629

GMM2S GMMITER GMMCUE GEL ET ETEL SGEL SET SETEL

mean α -1.197984 -1.098225 -0.361745 -0.370533 -0.361434 -0.368460 -0.371025 -0.358880 -0.365012

bias α -0.829984 -0.730225 0.006255 -0.002533 0.006566 -0.000460 -0.003025 0.009120 0.002988

mse α 3.604356 3.690784 0.001912 0.000341 0.000276 0.000471 0.000384 0.000188 0.000241

mae α 0.987495 0.971869 0.017620 0.011394 0.013219 0.015002 0.012487 0.011009 0.010551

mean β 0.832283 0.845932 0.949841 0.949360 0.949605 0.948366 0.950019 0.949814 0.949038

bias β -0.117717 -0.104068 -0.000159 -0.000640 -0.000395 -0.001634 0.000019 -0.000186 -0.000962

mse β 0.071710 0.073722 0.000037 0.000010 0.000007 0.000016 0.000007 0.000002 0.000007

mae β 0.138731 0.136549 0.002583 0.002030 0.001903 0.002706 0.001824 0.001152 0.001797

mean σ 0.387174 0.328301 0.261493 0.316921 0.301799 0.312991 0.310528 0.307241 0.316634

bias σ 0.127174 0.068301 0.001493 0.056921 0.041799 0.052991 0.050528 0.047241 0.056634

mse σ 0.092473 0.081984 0.001088 0.004417 0.002851 0.004073 0.003565 0.002990 0.004241

mae σ 0.208110 0.207164 0.019947 0.057437 0.045345 0.054480 0.051266 0.049407 0.057532

Table 23. Student t (4) Innovations in Variance, Subset of Instruments -
α=-0.368 β=.95 σ=.26

GMM2S GMMITER GMMCUE GEL ET ETEL SGEL SET SETEL

mean α -1.013611 -0.966006 -0.160485 -0.162815 -0.170481 -0.159132 -0.158832 -0.158234 -0.152619

bias α -0.866411 -0.818806 -0.013285 -0.015615 -0.023281 -0.011932 -0.011632 -0.011034 -0.005419

mse α 4.022485 4.187654 0.038329 0.001189 0.001502 0.007726 0.001482 0.000565 0.000261

mae α 0.936151 0.921012 0.031955 0.018731 0.024269 0.014440 0.015531 0.013051 0.008082

mean β 0.857288 0.863844 0.977562 0.977898 0.976214 0.977718 0.978634 0.977919 0.978892

bias β -0.122712 -0.116156 -0.002438 -0.002102 -0.003786 -0.002282 -0.001366 -0.002081 -0.001108

mse β 0.080732 0.084098 0.000880 0.000030 0.000039 0.000203 0.000033 0.000017 0.000008

mae β 0.132099 0.129967 0.004854 0.002841 0.003945 0.002639 0.002217 0.002398 0.001452

mean σ 0.304510 0.262075 0.168088 0.211233 0.203048 0.207656 0.205108 0.212755 0.214762

bias σ 0.138810 0.096375 0.002388 0.045533 0.037349 0.041956 0.039408 0.047055 0.049062

mse σ 0.086786 0.077900 0.002828 0.003107 0.002707 0.003095 0.002736 0.003547 0.003678

mae σ 0.201054 0.195892 0.017739 0.046314 0.040821 0.043382 0.040756 0.049855 0.050215

Table 24. Student t (4) Innovations in Variance, Subset of Instruments -
α-.1472 β=.98 σ=.1657

SV Model - Student-t in Volatility Equation - Subset of Instruments.
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GMM2S GMMITER GMMCUE GEL ET ETEL SGEL SET SETEL

mean α -0.896686 -0.921662 -0.796978 -0.728243 -0.835926 -0.729340 -0.734904 -0.757911 -0.732839

bias α -0.160686 -0.185662 -0.060978 0.007757 -0.099926 0.006660 0.001096 -0.021911 0.003161

mse α 0.758956 1.251152 0.627006 0.029238 0.367820 0.005461 0.001601 0.075302 0.000141

mae α 0.563200 0.764779 0.503486 0.055221 0.350987 0.024025 0.010621 0.085502 0.008789

mean β 0.879116 0.875898 0.892628 0.901656 0.885525 0.903877 0.900704 0.897573 0.901291

bias β -0.020884 -0.024102 -0.007372 0.001656 -0.014475 0.003877 0.000704 -0.002427 0.001291

mse β 0.013699 0.022533 0.011362 0.000583 0.007103 0.000121 0.000031 0.001436 0.000007

mae β 0.076157 0.103184 0.068596 0.008517 0.048875 0.005174 0.001878 0.012231 0.001886

mean σ 0.287003 0.236533 0.232068 0.355123 0.286266 0.399452 0.397132 0.351652 0.393545

bias σ -0.075897 -0.126367 -0.130832 -0.007777 -0.076634 0.036552 0.034232 -0.011248 0.030645

mse σ 0.032933 0.049530 0.039221 0.004932 0.019929 0.003515 0.002085 0.008075 0.001812

mae σ 0.150171 0.189751 0.171741 0.055842 0.114077 0.048633 0.041545 0.069468 0.037968

Table 25. Level Outlier - α=-0.736 β=.9 σ=.3629

GMM2S GMMITER GMMCUE GEL ET ETEL SGEL SET SETEL

mean α -0.450450 -0.452413 -0.505817 -0.369780 -0.366575 -0.368322 -0.367022 -0.366164 -0.365422

bias α -0.082450 -0.084413 -0.137817 -0.001780 0.001425 -0.000322 0.000978 0.001836 0.002578

mse α 0.351303 0.524573 0.029065 0.000364 0.000199 0.000283 0.000401 0.000209 0.000378

mae α 0.375102 0.464943 0.140401 0.012881 0.010511 0.012609 0.012380 0.011065 0.012730

mean β 0.939147 0.938991 0.931884 0.950220 0.950221 0.950119 0.950194 0.950278 0.950372

bias β -0.010853 -0.011009 -0.018116 0.000220 0.000221 0.000119 0.000194 0.000278 0.000372

mse β 0.006482 0.009584 0.000528 0.000007 0.000003 0.000005 0.000006 0.000003 0.000006

mae β 0.050839 0.062913 0.018567 0.001763 0.001325 0.001726 0.001484 0.001256 0.001481

mean σ 0.185589 0.143397 0.208345 0.266704 0.273863 0.263786 0.259905 0.272609 0.259491

bias σ -0.074411 -0.116603 -0.051655 0.006704 0.013863 0.003786 -0.000095 0.012609 -0.000509

mse σ 0.026369 0.036223 0.003550 0.001492 0.001554 0.001678 0.001966 0.001545 0.002029

mae σ 0.134897 0.165390 0.051706 0.030328 0.032812 0.033478 0.036517 0.033588 0.036596

Table 26. Level Outlier - α=-0.368 β=.95 σ=.26

GMM2S GMMITER GMMCUE GEL ET ETEL SGEL SET SETEL

mean α -0.227624 -0.232687 -0.156716 -0.177422 -0.167124 -0.166912 -0.178924 -0.168041 -0.169662

bias α -0.080424 -0.085487 -0.009516 -0.030222 -0.019924 -0.019712 -0.031724 -0.020841 -0.022462

mse α 0.182403 0.256869 0.008321 0.001678 0.000806 0.000916 0.002641 0.000985 0.001197

mae α 0.234099 0.269799 0.031758 0.031825 0.020514 0.020990 0.034853 0.021881 0.024061

mean β 0.969217 0.968663 0.979613 0.976150 0.977225 0.977292 0.975734 0.977080 0.976873

bias β -0.010783 -0.011337 -0.000387 -0.003850 -0.002775 -0.002708 -0.004266 -0.002920 -0.003127

mse β 0.003380 0.004678 0.000148 0.000025 0.000019 0.000021 0.000044 0.000023 0.000026

mae β 0.031679 0.036386 0.003503 0.004078 0.002851 0.002860 0.004695 0.003064 0.003324

mean σ 0.107893 0.083627 0.145206 0.174273 0.172216 0.163029 0.167475 0.170336 0.162140

bias σ -0.057807 -0.082073 -0.020494 0.008573 0.006516 -0.002671 0.001775 0.004636 -0.003560

mse σ 0.016458 0.020176 0.002062 0.001507 0.001380 0.001435 0.001771 0.001392 0.001579

mae σ 0.112344 0.127673 0.020619 0.030929 0.029741 0.029958 0.034131 0.029380 0.032292

Table 27. Level Outlier - α-.1472 β=.98 σ=.1657

SV Model - Level Outlier.
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GMM2S GMMITER GMMCUE GEL ET ETEL SGEL SET SETEL

mean α -0.606591 -0.573558 -0.538447 -0.687828 -0.625819 -0.706385 -0.774831 -0.809760 -0.733482

bias α 0.129409 0.162442 0.197553 0.048172 0.110181 0.029615 -0.038831 -0.073760 0.002518

mse α 0.584982 0.692991 0.525481 0.080173 0.219997 0.190438 0.116738 0.801588 0.001846

mae α 0.515088 0.569472 0.498117 0.135071 0.306007 0.204829 0.100064 0.469002 0.017395

mean β 0.918228 0.922744 0.927494 0.906621 0.915070 0.905568 0.895372 0.890500 0.902918

bias β 0.018228 0.022744 0.027494 0.006621 0.015070 0.005568 -0.004628 -0.009500 0.002918

mse β 0.010605 0.012582 0.009568 0.001503 0.004040 0.003652 0.002273 0.014845 0.000050

mae β 0.069723 0.077076 0.067698 0.018982 0.041769 0.029291 0.014573 0.064207 0.003939

mean σ 0.248488 0.222641 0.223980 0.323688 0.283371 0.372535 0.363399 0.298043 0.405760

bias σ -0.114412 -0.140259 -0.138920 -0.039212 -0.079529 0.009635 0.000499 -0.064857 0.042860

mse σ 0.036861 0.047877 0.042372 0.007156 0.016915 0.009111 0.004789 0.025874 0.003402

mae σ 0.159842 0.184737 0.173584 0.065210 0.103195 0.076377 0.049515 0.123514 0.048524

Table 28. Level Outlier, Subset of Instruments - α=-0.736 β=.9 σ=.3629

GMM2S GMMITER GMMCUE GEL ET ETEL SGEL SET SETEL

mean α -0.335845 -0.330789 -0.386053 -0.370569 -0.360749 -0.366858 -0.372957 -0.362454 -0.367322

bias α 0.032155 0.037211 -0.018053 -0.002569 0.007251 0.001142 -0.004957 0.005546 0.000678

mse α 0.393126 0.447313 0.005856 0.000258 0.000216 0.000272 0.000349 0.000100 0.000117

mae α 0.346897 0.376404 0.033920 0.009525 0.010960 0.010322 0.012304 0.007358 0.006922

mean β 0.954821 0.955542 0.948156 0.950982 0.951276 0.950536 0.951031 0.950969 0.950638

bias β 0.004821 0.005542 -0.001844 0.000982 0.001276 0.000536 0.001031 0.000969 0.000638

mse β 0.007061 0.008069 0.000095 0.000009 0.000006 0.000008 0.000010 0.000003 0.000005

mae β 0.046834 0.050766 0.004224 0.002083 0.001983 0.001981 0.002292 0.001400 0.001500

mean σ 0.163024 0.146836 0.230379 0.288998 0.270922 0.285684 0.288388 0.284835 0.293978

bias σ -0.096976 -0.113164 -0.029621 0.028998 0.010922 0.025684 0.028388 0.024835 0.033978

mse σ 0.028388 0.034878 0.002244 0.001811 0.001298 0.001837 0.001679 0.001516 0.002272

mae σ 0.143643 0.161651 0.031444 0.032089 0.028832 0.032401 0.031920 0.031852 0.036552

Table 29. Level Outlier, Subset of Instruments - α=-0.368 β=.95 σ=.26

GMM2S GMMITER GMMCUE GEL ET ETEL SGEL SET SETEL

mean α -0.188493 -0.208328 -0.132164 -0.159277 -0.163758 -0.151777 -0.158373 -0.151709 -0.154944

bias α -0.041293 -0.061128 0.015036 -0.012077 -0.016558 -0.004577 -0.011173 -0.004509 -0.007744

mse α 0.277367 0.463592 0.002377 0.000597 0.000662 0.000095 0.000625 0.000122 0.000265

mae α 0.217575 0.248036 0.026094 0.016203 0.017784 0.005898 0.015817 0.006516 0.010448

mean β 0.974756 0.972189 0.982451 0.979374 0.977933 0.979646 0.979411 0.979550 0.979339

bias β -0.005244 -0.007811 0.002451 -0.000626 -0.002067 -0.000354 -0.000589 -0.000450 -0.000661

mse β 0.004900 0.008202 0.000043 0.000007 0.000013 0.000003 0.000008 0.000003 0.000004

mae β 0.029199 0.033214 0.003226 0.001859 0.002529 0.001038 0.001722 0.001228 0.001289

mean σ 0.100210 0.092477 0.140692 0.196440 0.181443 0.192532 0.189730 0.189435 0.196667

bias σ -0.065490 -0.073223 -0.025008 0.030740 0.015743 0.026832 0.024030 0.023735 0.030967

mse σ 0.017358 0.020779 0.002875 0.001913 0.001262 0.001657 0.001677 0.001469 0.002163

mae σ 0.115406 0.125359 0.025701 0.033128 0.027601 0.030217 0.027776 0.029240 0.034699

Table 30. Level Outlier, Subset of Instruments - α-.1472 β=.98 σ=.1657

SV Model - Level Outlier - Subset of Instruments.
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GMM2S GMMITER GMMCUE GEL ET ETEL SGEL SET SETEL

mean α -0.706232 -0.637902 -0.592404 -0.709767 -0.704501 -0.725353 -0.730109 -0.734256 -0.731349

bias α 0.029768 0.098098 0.143596 0.026233 0.031499 0.010647 0.005891 0.001744 0.004651

mse α 0.465434 0.924587 0.469655 0.015619 0.119894 0.004171 0.001127 0.017193 0.000166

mae α 0.454061 0.648185 0.466139 0.043156 0.177426 0.021347 0.011337 0.036012 0.009249

mean β 0.904874 0.914112 0.920234 0.903850 0.903874 0.903045 0.900937 0.900494 0.900896

bias β 0.004874 0.014112 0.020234 0.003850 0.003874 0.003045 0.000937 0.000494 0.000896

mse β 0.008459 0.016728 0.008446 0.000292 0.002275 0.000089 0.000022 0.000323 0.000005

mae β 0.061305 0.087544 0.063305 0.006366 0.024527 0.004016 0.001827 0.005275 0.001637

mean σ 0.256169 0.177301 0.185598 0.363270 0.300050 0.393189 0.400320 0.377173 0.396990

bias σ -0.106731 -0.185599 -0.177302 0.000370 -0.062850 0.030289 0.037420 0.014273 0.034090

mse σ 0.033791 0.059072 0.049032 0.005121 0.015349 0.003025 0.001967 0.004401 0.001776

mae σ 0.153312 0.214148 0.195515 0.055298 0.097185 0.045333 0.040743 0.051957 0.038353

Table 31. Volatility Outlier - α=-0.736 β=.9 σ=.3629

GMM2S GMMITER GMMCUE GEL ET ETEL SGEL SET SETEL

mean α -0.351970 -0.352200 -0.508979 -0.370434 -0.365920 -0.368212 -0.367283 -0.365273 -0.367459

bias α 0.016030 0.015800 -0.140979 -0.002434 0.002080 -0.000212 0.000717 0.002727 0.000541

mse α 0.334339 0.610981 0.030704 0.001105 0.000219 0.000269 0.000495 0.000259 0.001637

mae α 0.329172 0.438042 0.144810 0.014213 0.011012 0.012832 0.012775 0.011757 0.013554

mean β 0.952649 0.952689 0.931288 0.949823 0.950035 0.949864 0.949897 0.950127 0.949848

bias β 0.002649 0.002689 -0.018712 -0.000177 0.000035 -0.000136 -0.000103 0.000127 -0.000152

mse β 0.005887 0.010844 0.000560 0.000017 0.000003 0.000005 0.000008 0.000004 0.000027

mae β 0.044410 0.059013 0.019272 0.001791 0.001296 0.001651 0.001511 0.001290 0.001593

mean σ 0.158805 0.108873 0.202559 0.269724 0.274544 0.267376 0.265636 0.273019 0.265015

bias σ -0.101195 -0.151127 -0.057441 0.009724 0.014544 0.007376 0.005636 0.013019 0.005015

mse σ 0.026434 0.040086 0.004335 0.001910 0.001650 0.001972 0.002104 0.001773 0.002085

mae σ 0.138501 0.180479 0.057666 0.033782 0.034282 0.035755 0.037771 0.035826 0.037569

Table 32. Volatility Outlier - α=-0.368 β=.95 σ=.26

GMM2S GMMITER GMMCUE GEL ET ETEL SGEL SET SETEL

mean α -0.148088 -0.156272 -0.153073 -0.175806 -0.168742 -0.169571 -0.177988 -0.171109 -0.173611

bias α -0.000888 -0.009072 -0.005873 -0.028606 -0.021542 -0.022371 -0.030788 -0.023909 -0.026411

mse α 0.097686 0.181002 0.001995 0.001490 0.001060 0.001655 0.002637 0.001731 0.002607

mae α 0.179616 0.224732 0.021219 0.029802 0.022380 0.023438 0.034092 0.024905 0.027865

mean β 0.979896 0.978821 0.980121 0.976108 0.976763 0.976686 0.975623 0.976401 0.976064

bias β -0.000104 -0.001179 0.000121 -0.003892 -0.003237 -0.003314 -0.004377 -0.003599 -0.003936

mse β 0.001817 0.003372 0.000031 0.000025 0.000027 0.000042 0.000047 0.000045 0.000061

mae β 0.024394 0.030485 0.002028 0.004047 0.003334 0.003450 0.004797 0.003721 0.004109

mean σ 0.083003 0.058572 0.150466 0.174770 0.176514 0.168816 0.170293 0.175436 0.167197

bias σ -0.082697 -0.107128 -0.015234 0.009070 0.010814 0.003116 0.004593 0.009736 0.001497

mse σ 0.015647 0.020630 0.001414 0.001570 0.001758 0.001881 0.001829 0.001875 0.001901

mae σ 0.112508 0.132708 0.015302 0.031762 0.032617 0.032367 0.034844 0.033013 0.033659

Table 33. Volatility Outlier - α-.1472 β=.98 σ=.1657

SV Model - Volatility Outlier.
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GMM2S GMMITER GMMCUE GEL ET ETEL SGEL SET SETEL

mean α -0.380933 -0.319525 -0.346457 -0.675964 -0.533546 -0.689775 -0.722365 -0.629596 -0.730389

bias α 0.355067 0.416475 0.389543 0.060036 0.202454 0.046225 0.013635 0.106404 0.005611

mse α 0.400762 0.522664 0.372611 0.053243 0.136697 0.052746 0.017866 0.201125 0.002570

mae α 0.507168 0.583628 0.506768 0.103944 0.263422 0.106389 0.039998 0.254014 0.016877

mean β 0.948491 0.956853 0.953213 0.908027 0.927169 0.907076 0.902300 0.914907 0.902072

bias β 0.048491 0.056853 0.053213 0.008027 0.027169 0.007076 0.002300 0.014907 0.002072

mse β 0.007406 0.009648 0.006851 0.000982 0.002507 0.001024 0.000334 0.003711 0.000057

mae β 0.068937 0.079200 0.068915 0.014429 0.035831 0.015276 0.005944 0.034862 0.003113

mean σ 0.183818 0.142762 0.161442 0.338956 0.248977 0.380012 0.374279 0.283110 0.396593

bias σ -0.179082 -0.220138 -0.201458 -0.023944 -0.113923 0.017112 0.011379 -0.079790 0.033693

mse σ 0.052152 0.071179 0.060068 0.008752 0.025916 0.006950 0.004083 0.023850 0.002701

mae σ 0.200869 0.239498 0.218347 0.070212 0.132413 0.064921 0.048370 0.118879 0.043555

Table 34. Volatility Outlier, Subset of Instruments - α=-0.736 β=.9 σ=.3629

GMM2S GMMITER GMMCUE GEL ET ETEL SGEL SET SETEL

mean α -0.172707 -0.155808 -0.416848 -0.371238 -0.360159 -0.366675 -0.372505 -0.361854 -0.366928

bias α 0.195293 0.212192 -0.048848 -0.003238 0.007841 0.001325 -0.004505 0.006146 0.001072

mse α 0.205893 0.235857 0.008678 0.000264 0.000227 0.000177 0.000371 0.000112 0.000124

mae α 0.315813 0.339617 0.063105 0.010417 0.011081 0.008793 0.012457 0.007730 0.007175

mean β 0.976594 0.978933 0.943591 0.950694 0.951035 0.950248 0.950705 0.950765 0.950356

bias β 0.026594 0.028933 -0.006409 0.000694 0.001035 0.000248 0.000705 0.000765 0.000356

mse β 0.003823 0.004361 0.000162 0.000008 0.000005 0.000005 0.000009 0.000003 0.000005

mae β 0.042912 0.046096 0.008475 0.002108 0.001795 0.001665 0.002122 0.001287 0.001475

mean σ 0.104251 0.082372 0.217374 0.293798 0.272302 0.287402 0.288896 0.283725 0.295915

bias σ -0.155749 -0.177628 -0.042626 0.033798 0.012302 0.027402 0.028896 0.023725 0.035915

mse σ 0.036282 0.044006 0.003188 0.002233 0.001357 0.001832 0.001810 0.001541 0.002494

mae σ 0.172382 0.192864 0.044066 0.036650 0.029614 0.032069 0.032802 0.032286 0.038483

Table 35. Volatility Outlier, Subset of Instruments - α=-0.368 β=.95 σ=.26

GMM2S GMMITER GMMCUE GEL ET ETEL SGEL SET SETEL

mean α -0.087077 -0.083241 -0.151294 -0.158665 -0.161511 -0.153171 -0.158281 -0.152353 -0.153574

bias α 0.060123 0.063959 -0.004094 -0.011465 -0.014311 -0.005971 -0.011082 -0.005153 -0.006374

mse α 0.113590 0.127431 0.014150 0.000588 0.000775 0.000351 0.000671 0.000194 0.000245

mae α 0.162835 0.170595 0.028076 0.015739 0.016077 0.007695 0.014863 0.006753 0.009692

mean β 0.988190 0.988723 0.980057 0.979187 0.977970 0.979248 0.979189 0.979258 0.979384

bias β 0.008190 0.008723 0.000057 -0.000813 -0.002030 -0.000752 -0.000811 -0.000742 -0.000616

mse β 0.002128 0.002384 0.000221 0.000010 0.000019 0.000009 0.000010 0.000005 0.000004

mae β 0.022082 0.023135 0.003205 0.001995 0.002513 0.001365 0.001746 0.001348 0.001257

mean σ 0.057910 0.048059 0.148996 0.197172 0.182484 0.192340 0.190732 0.192244 0.199407

bias σ -0.107790 -0.117641 -0.016704 0.031472 0.016784 0.026640 0.025032 0.026544 0.033707

mse σ 0.018145 0.020719 0.001930 0.002109 0.001506 0.001826 0.001733 0.001906 0.002436

mae σ 0.125675 0.135012 0.018445 0.034274 0.029489 0.030313 0.028883 0.032819 0.037243

Table 36. Volatility Outlier, Subset of Instruments - α-.1472 β=.98 σ=.1657

SV Model - Volatility Outlier - Subset of Instruments.
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Figures

Figure 1. MSE and MAE of the estimation of the reference models with
sample size 500 and 24 moment conditions.
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Figure 2. Relative Efficiency in the reference models - Effect of sample size
- (MSE sample size 250 /MSE sample size 1000). Estimation based on 24
moment conditions
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Figure 3. MSE and MAE of the estimation of the reference models with
sample size 500 and 14 moment conditions.
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Figure 4. Relative Efficiency in the reference models - Effect of number of mo-
ment conditions - (MSE 24 moment conditions /MSE 24 moment conditions).
Sample size 500.
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Figure 5. MSE and MAE of the estimation of the reference models, modified
with Student-t with 4 d.f. innovation in the mean equation. Sample size 500
and 24 moment conditions.
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Figure 6. MSE and MAE of the estimation of the reference models, modified
with Student-t with 4 d.f. innovation in the mean equation. Sample size 500
and 14 moment conditions.
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Figure 7. Relative Efficiency in the reference models modified with Student-t
with 4 d.f innovation in the mean equation - Effect of number of moment con-
ditions - (MSE 14 moment conditions /MSE 24 moment conditions). Sample
size 500.
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Figure 8. MSE and MAE of the estimation of the reference models, modified
with Student-t with 4 d.f. innovation in the volatility equation. Sample size
500 and 24 moment conditions.
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Figure 9. MSE and MAE of the estimation of the reference models, modified
with Student-t with 4 d.f. innovation in the volatility equation. Sample size
500 and 14 moment conditions.
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Figure 10. Relative Efficiency in the reference models modified with Student-
t with 4 d.f innovation in the volatility equation - Effect of number of moment
conditions - (MSE 14 moment conditions /MSE 24 moment conditions). Sam-
ple size 500.
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Figure 11. MSE and MAE of the estimation of the reference models, modified
with Level Outlier. Sample size 500 and 24 moment conditions.
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Figure 12. MSE and MAE of the estimation of the reference models, modified
with Level Outlier. Sample size 500 and 14 moment conditions.
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Figure 13. Relative Efficiency in the reference models with level outlier -
Effect of number of moment conditions - (MSE 14 moment conditions /MSE
24 moment conditions). Sample size 500.
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Figure 14. MSE and MAE of the estimation of the reference models modified
with volatility outlier. Sample size 500 and 24 moment conditions.
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Figure 15. MSE and MAE of the estimation of the reference models modified
with volatility outlier. Sample size 500 and 14 moment conditions.
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Figure 16. Relative Efficiency in the reference models modified with volatility
outlier - Effect of number of moment conditions - (MSE 14 moment conditions
/MSE 24 moment conditions.) Sample size 500.
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