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Abstract. This paper presents the Full Bayesian Significance Test for unit roots in auto-regressive
time series, and compares it to other approaches on a benchmark of 14 econometric series.
Keywords. ARMA models, e-values, FBST, Unit roots.

INTRODUCTION

Testing for unit roots in ARMA time series models is a problem that presents well known
and documented difficulties for standard Bayes Factor methodologies, see [1], [2], [4],
[6], [10], and [13] to [16]. In [2, p.159], the authors state:

“Testing for unit root is a Bayesian framework in one of the most controversial topics
in the economic literature. There are several reasons for this:

- First ... [the use of] information that is not contained in the likelihood function and
this violates the likelihood principle to which Bayesians stick.

- Secondly, the unit root hypothesis is a point hypothesis and Bayesians do not like
testing point hypothesis because it is not natural to compare an interval which receives
a positive probability with a point null hypothesis of zero mass.

- Finally, classical and Bayesian unit root tests do not give the same answer. This
is a striking example where it is not possible to recover the classical results using a
non-informative prior.”

We will show that the FBST, or Full Bayesian Significance Test, presented in [9],
easily overcomes all these difficulties, see also [7], and [17]. Moreover, the FBST e-
values are computed following the absolutely standard form of FBST formalism, using
non-informative priors, and in strict observance of the likelihood principle. Finally,
the FBST analysis agrees with the classic analysis on a benchmark of 14 time series
commonly used in the econometric literature.

The first section describes the FBST procedure and the numerical procedures to
calculate the e-values. Afterwards, we describe the problem and the general model
used to test for unit roots and derive the posterior distribution used in the present
work to perform the FBST. Concluding, we present the FBST results for the mentioned
time series and compare the classical and Bayesian procedures performing simulation
exercises.



FBST REVIEW

The FBST was specially designed to give an epistemic value, or value of evidence, sup-
porting a sharp hypothesis H. This support function is the e-value, ev(H). Furthermore,
the e-value has many necessary or desirable properties for a statistical support function,
such as:

(I) Give an intuitive and simple measure of significance for the hypothesis in test,
ideally, a probability defined directly in the original or natural parameter space.

(II) Have an intrinsically geometric definition, independent of any non-geometric as-
pect, like the particular parameterization of the (manifold representing the) null hypoth-
esis being tested, or the particular coordinate system chosen for the parameter space,
i.e., be an invariant procedure.

(III) Give a measure of significance that is smooth, i.e. continuous and differentiable,
on the hypothesis parameters and sample statistics, under appropriate regularity condi-
tions of the model.

(IV) Obey the likelihood principle , i.e., the information gathered from observations
should be represented by, and only by, the likelihood function.

(V) Require no ad hoc artifice like assigning a positive prior probability to zero
measure sets, or setting an arbitrary initial belief ratio between hypotheses.

(VI) Be a possibilistic support function, where the support of a logical disjunction is
the maximum support among the support of the disjuncts.

(VII) Be able to provide a consistent test for a given sharp hypothesis.
(VIII) Be able to provide compositionality operations in complex models.
(IX) Be an exact procedure, i.e., make no use of “large sample” asymptotic approxi-

mations when computing the e-value.
(X) Allow the incorporation of previous experience or expert’s opinion via (subjec-

tive) prior distributions.
The objective of this section is to provide a very short review of the FBST theoretical

framework, summarizing the most important statistical properties of its support function,
the e-value. It also summarizes the logical (algebraic) properties of the e-value, and its
relations to other classical support calculi, including possibilistic calculus and logic,
paraconsistent and classical. Further details, demonstrations of theoretical properties,
comparison with other statistical tests for sharp hypotheses, and an extensive list of
references can be found in the author’s previous papers.

Let θ ∈ Θ ⊆ Rp be a vector parameter of interest, and L(θ |x) be the likelihood
associated to the observed data x, a standard statistical model. Under the Bayesian
paradigm the posterior density, pn(θ), is proportional to the product of the likelihood
and a prior density, The (null) hypothesis H states that the parameter lies in the null set,
defined by inequality and equality constraints given by vector functions g and h in the
parameter space.

pn(θ) ∝ L(θ |X) p0(θ) , ΘH = {θ ∈Θ |g(θ)≤ 0∧h(θ) = 0} .

From now on, we use a relaxed notation, writing H instead of ΘH . We are particularly
interested in sharp (precise) hypotheses, i.e., those in which dim(H) < dim(Θ), i.e. there
is at least one equality constraint.



The FBST defines ev(H), the e-value, the epistemic value or value of (presented or
observed) evidence supporting (in favor of) the hypothesis H, and ev(H), the e-value
against H, as

s(θ) =
pn(θ)
r(θ)

, s∗ = s(θ ∗) = supθ∈H s(θ) , ŝ = s(θ̂) = supθ∈Θ s(θ) ,

T (v) = {θ ∈Θ |s(θ)≤ v} , W (v) =
∫

T (v)
pn (θ)dθ , ev(H) = W (s∗) ,

T (v) = Θ−T (v) , W (v) = 1−W (v) , ev(H) = W (s∗) = 1− ev(H) .

The function s(θ) is known as the posterior surprise relative to a given reference
density, r(θ). W (v) is the cumulative surprise distribution. The surprise function was
used, among other statisticians, by Good, Evans and Royall. Its role in the FBST is to
make ev(H) explicitly invariant under suitable transformations on the coordinate system
of the parameter space, see next section.

The tangential (to the hypothesis) set T = T (s∗), is a Highest Relative Surprise Set
(HRSS). It contains the points of the parameter space with higher surprise, relative to
the reference density, than any point in the null set H. When r(θ) ∝ 1, the possibly
improper uniform density, T is the Posterior’s Highest Density Probability Set (HDPS)
tangential to the null set H. Small values of ev(H) indicate that the hypothesis traverses
high density regions, favoring the hypothesis.

In the FBST the role of the reference density, r(θ) is to make ev(H) explicitly
invariant under suitable transformations of the coordinate system. Invariance, as used
in statistics, is a metric concept. The reference density can be interpreted as a compact
and interpretable representation for the reference metric in the original parameter space.
This metric is given by the geodesic distance on the density surface. The natural choice
of reference density is an uninformative prior, interpreted as a representation of no
information in the parameter space, or the limit prior for no observations, or the neutral
ground state for the Bayesian operation. Standard (possibly improper) uninformative
priors include the uniform and maximum entropy densities.

Let us consider the cumulative distribution of the e-value against the hypothesis,
V (c) = Pr(ev ≤ c), given θ 0, the true value of the parameter. Under appropriate reg-
ularity conditions, for increasing sample size, n→ ∞, we can say the following:
- If H is false, θ 0 /∈H, then ev converges (in probability) to 1, that is, V (0≤ c < 1)→ 0.
- If H is true, θ 0 ∈ H, then V (c), the confidence level, is approximated by the function

QQ(t,h,c) = Q
(
t−h,Q−1 (t,c)

)
, where

Q(k,x) = Γ(k/2,x/2)
/

Γ(k/2,∞) , Γ(k,x) =
∫ x

0
yk−1e−ydy ,

t = dim(Θ), h = dim(H) and Q(k,x) is the cumulative chi-square distribution with k
degrees of freedom.

Under the same regularity conditions, an appropriate choice of threshold or critical
level, c(n), provides a consistent test, τc , that rejects the hypothesis if ev(H) > c.

The empirical power analysis developed in [7] and [18], provides critical levels that
are consistent and also effective for small samples.



THE AUTO REGRESSIVE TIME SERIES MODEL

The AR(1) process
yt = φyt−1 + εt

where εt ∼ i.i.d.(0,σ2), has a unit root if φ = 1. In this case its mean and its variance
do not exist. If |φ | < 1, then the mean of yt is zero and its variance σ2/(1− φ 2) and
the process has a strong tendency to return to its mean value after a shock. However, if
the process has a unit root, a shock has an everlasting effect. This can be seen if yt is
expressed as the cumulated sum of past errors, each with the same weight. Therefore,
test for a unit root consists in testing the precise hypothesis H0 : φ = 1.

The economic and econometric literature has given great importance to the develop-
ment of unit root tests in the past two and a half decades. It is very important to know
if, for instance, economic recessions have permanent consequences for the level of fu-
ture GNP, or instead represent just a temporary downturn with the output lost eventually
made up during recovery. Nelson and Plosser, [10], argued that many economic series
are better characterized by unit roots than by deterministic trends.

However, in the development of the tests difficulties arised because the asymptotic
distribution of the ordinary least squares estimators presents a discontinuity at φ = 1.
The ADF test is the most used in unit root tests and assumes, in its more general form,
that the data generating process has a constant, a deterministic trend and follows an
AR(p) structure with i.i.d. errors. Below we introduce this model assuming gaussian
disturbances to develop the bayesian inference.

The AR(p), or order p auto-regressive time series model with white Gaussian noise
and deterministic intercept and trend, is written as:

yt = µ +δ t +φ1yt−1 + . . .+φpyt−p + εt

where εt ∼ N(0,σ2) ∀t = 1, . . . ,T . This series can also be written in the differenced or
correction form:

∆yt = µ +δ t +Γ0yt−1 +Γ1∆yt−1 + . . .+Γp−1∆yt−p+1 + εt

where ∆yt = yt− yt−1, Γ0 = φ1 + . . .+φp−1 and Γi =−∑
p
j=i+1 φ j, for i = 1, . . . , p−1.

If using this parametrization, the series has a unit root if Γ0 = 0. The ADF tests this
hypothesis against Γ0 ≤ 0, but if Γ0 ≥ 0 the process is non-stationary.

This model can also be written in standard regression form, using the parameter vector
θ = [β ,σ ], where β is a vector with all the linear parameters, Yp = [y1 . . .yp] is the vector
of the first p observations, and Y is the vector of all remaining observations:

Y = Xβ + e ,where

β =


µ

δ

Γ0
Γ1
. . .

Γp−1

 , Y =

 ∆yp+1
∆yp+2

. . .
∆yT

 , X =

 1 1 yp ∆yp . . . ∆y2
1 2 yp+1 ∆yp+1 . . . ∆y3
. . . . . . . . . . . . . . . . . .
1 T yT−1 ∆yT−1 . . . ∆yT−p+1





The dimensions of these matrices are, respectively, p+2×1 for β , T − p×1 for Y , and
T − p× p+2 for X .

Using the matrix regression form, it is easy to see that the ML estimator of β , the
predicted ML observations, and the sum of squared errors is given by

β̂ = (X ′X)−1X ′Y , Ŷ = X β̂ , and

e′e = (Y −Xβ )′(Y −Xβ ) = (Y − Ŷ )′(Y − Ŷ )+(β − β̂ )′X ′X(β − β̂ ) .

Using the standard non-informative prior f (β ,σ) ∝ 1/σ , the model posterior can be
written as:

f (β ,σ |Y,Yp) ∝ σ
−(T−p+1) exp

(
− 1

2σ2

(
(Y − Ŷ )′(Y − Ŷ )+(θ − θ̂)′X ′X(θ − θ̂)

))

NUMERICAL EXPERIMENTS AND RESULTS

After the model derived above we tested for unit roots 14 U.S. macroeconomic time
series first mentioned in Nelson and Plosser, [10]. Here we use the extended series, used
in Schotman and van Dijk, [14].

The following table shows the e-values and ADF test for the aforementioned econo-
metric time series. The ADF, Augmented Dickey and Fuller test, based on the Frisch-
Waugh-Lovell theorem, is arguably the most used unit root test in econometrics. We
have used the computer procedure described in James MacKinnon, at Queen’s Univer-
sity, [8]. All numerical time series follow the specification in Bauwens et al. [2], so that
the results are comparable.

As can be seen from the posterior expression, the conditional posteriors
are π(θ |σ ,Y,Yp) ∝ N(θ̂ ,σ2V ) and π(1/σ2|θ ,Y,Yp) ∝ Γ

(
T−p+3

2 ,B
)

, where

B = 0.5(Y − Ŷ )′(Y − Ŷ ) + (θ − θ̂)′X ′X(θ − θ̂) and V = (X ′X)−1. For the FBST
computations, several solvers can be used in the optimization step, as [3] or [5], and
standard Monte Carlo sampling is used in the integration step, see [7].

In table 1 we can see that the non-stationary posterior probability is quite distant from
the ADF p-value. These results were highlighted by Sims, [15] and Sims and Uhlig,
[16]. Considering the simplest AR(1) model, they argued that, once classical inference is
based on the distribution of φ̂ |φ = 1, it reaches counterintuitive conclusions because the
referred distribution is skewed. Bayesian inference, they conclude, uses the distribution
of φ |φ̂ ,y1 . . . ,yT which is not skewed.

Phillips, [13] claims that the difference in results between classical and bayesian
approaches is due to the flat prior that puts much weight on the stationary region. He
proposed the use of Jeffreys priors, which restored the conclusions drawn by the classical
test. Phillips argued that the flat prior was, actually, informative when used in time series
models like those for unit root tests. He made simulations that show the

“ [the use of a] flat prior has a tendency to bias the posterior towards stationarity. ...
even when [the estimator] is close to unity, there may still be a non negligible downward
bias in the [flat] posterior probabilities”.



TABLE 1. Unit root tests for Nelson and Plosser data
Series start p trend ADF p-value P(Γ0 ≥ 0|Y ) e-value

Real GNP 1909 2 yes -3.52 0.044 0.0005 0.040
Nominal GNP 1909 2 yes -2.06 0.559 0.0238 0.523
Real GNP per capita 1909 2 yes -3.59 0.037 0.0004 0.034
Industrial prod. 1860 2 yes -3.62 0.032 0.0003 0.028
Employment 1890 2 yes -3.47 0.048 0.0004 0.043
Unemployment rate 1890 4 no -4.04 0.019 0.0001 0.020
GNP deflator 1889 2 yes -1.62 0.778 0.0584 0.762
Consumer prices 1860 4 yes -1.22 0.902 0.1154 0.983
Nominal wages 1900 2 yes -2.40 0.377 0.0106 0.341
Real wages 1900 2 yes -1.71 0.739 0.0475 0.715
Money stock 1889 2 yes -2.91 0.164 0.0029 0.147
Velocity 1869 2 yes -1.62 0.779 0.0620 0.777
Bond yield 1900 4 no -1.35 0.602 0.0962 0.936
Stock prices 1871 2 yes -2.44 0.357 0.0103 0.349

TABLE 2. MLE under H0 : Γ0 = 0

Parameters Real GNP Ind. Prod. GNP def. Wage

µ 0.01543 0.049427 0.00187 0.01494
δ 0.00011 -0.00014 0.00027 0.00020
Γ1 0.33146 0.03636 0.44992 0.46687
σ 0.05558 0.09682 0.04364 0.05545

TABLE 3. Standard error of MLE under H0 : Γ0 = 0

Parameters Real GNP Ind. Prod. GNP def. Wage

µ 0.01320 0.01806 0.00902 0.01247
δ 0.00028 0.00024 0.00016 0.00024
Γ1 0.10895 0.08966 0.09163 0.09661

TABLE 4. MLE - unrestricted model
Parameters Real GNP Ind. Prod. GNP def. Wage

µ 0.81849 0.05221 0.09086 0.39792
δ 0.00567 0.00718 0.00112 0.00309
Γ0 -0.17631 -0.17658 -0.03164 -0.06494
Γ1 0.41106 0.12432 0.46979 0.50130
σ 0.05193 0.09252 0.04329 0.05392

Tables 2 and 3 display some ML estimators and the respective standard errors as-
suming unit roots. Table 4 and 5 show the ML estimators for the same series for the
unrestricted model. Table 6 and 7 give the number of series which rejected the unit root
hypothesis in 100 generated samples assuming that there was (table 6) or not (table 7) a
unit root. We used three criteria to reject the hypothesis: the ADF asymptotic p-value for
5% significance, the exact ADF p-value for 5% significance and the e-value set in 0.05.

It is important to remember that finite sample critical values for unit root tests depend



TABLE 5. Standard error of MLE - unrestricted model
Parameters Real GNP Ind. Prod. GNP def. Wage

µ 0.23279 0.01727 0.05667 0.16301
δ 0.00163 0.00206 0.00056 0.00125
Γ0 0.05104 0.04941 0.01990 0.02756
Γ1 0.10436 0.08915 0.09175 0.09522

TABLE 6. Simulated series rejecting H0 in hundred gen-
erated assuming H0

Series < ADF5%(∞) < ADF5%(ex.) ev < 0.05

Real GNP 4 3 3
Ind. Prod. 4 4 4
GNP def. 7 6 6
Wage 4 4 4

TABLE 7. Simulated series rejecting H0 in hundred gen-
erated assuming the unrestricted model

Series < ADF5%(∞) < ADF5%(ex.) ev < 0.05

Real GNP 73 67 64
Ind. Prod. 85 82 84
GNP def. 20 18 18
Wage 29 27 27

on the assumption that the error terms are N(0,σ2I) once these values were generated
by simulations that use this assumption. The asymptotic critical values are valid much
more generally, since they do not require normality or homoskedasticity. Therefore, for
small samples, it is safer to rely on asymptotic critical values.

Table 6 shows that the FBST, even using the flat prior, has a power similar to the ADF
test. Hence, the argument used by Phillips to criticize conclusions based on posterior
probabilities when flat priors were used is not valid for the FBST.

We perform more numerical simulations to compare the ADF and the FBST powers.
The exercise was the following. After simulating 1000 series with the data generator
processes:

yt = φyt−1 + εt (1)

yt = µ +φyt−1 + εt (2)

yt = µ +δ t +φyt−1 + εt , (3)

we calculate the ADF statistic and the e-value. In order to reject or not the hypothesis
tested we used the ADF 5% significance level given for samples with size of 50 obser-
vations. For the FBST we used the level one defined empirically, i.e. the e-value for the
5% percentile when the hypothesis is true. The tables below summarize the results.



TABLE 8. Number of times in
which H0 : φ = 1 was rejected for the
1000 series generated by (1)

Parameters ADF Ev < 0.144

φ=1 42 50
φ=0.99 65 63
φ=0.975 83 84
φ=0.95 139 132

TABLE 9. Number of times in
which H0 : φ = 1 was rejected for
the 1000 series generated by (2) -
µ = 0.5

Parameters ADF Ev < 0.15

φ=1 10 50
φ=0.99 33 101
φ=0.975 65 188
φ=0.95 110 300

TABLE 10. Number of times in
which H0 : φ = 1 was rejected for the
1000 series generated by (3) - µ = 0.5,
δ = 0.02

Parameters ADF Ev < 0.0654

φ=1 13 50
φ=0.99 46 111
φ=0.975 55 133
φ=0.95 55 167

The ADF and FBST have similar power for the model without deterministic terms.
For the models with constant and with constant and deterministic trend, the FBST has a
better performance even if we consider the statistic asymptotic levels.

Another great advantage of the FBST is the possibility to perform the test even
if the data set does not have gaussian distribution. Bearing this in mind, we present
another exercise. We simulated 1000 series with the random term following a Gumbel
distribution with nil location parameter and unitary scale parameter. Below we present
the standard normal and the Gumbel(0,1) densites. We used the simplest AR(1) DGP for
this exercise. Table 11 summarizes the results.

Once the ADF statistic critical levels were calculated by simulations assuming the
gaussian distribution of the error term, conclusions based on this test are compromised
when one is not sure about the data set normality, specially for small samples. Even using
the asymptotic critic level for the ADF statistic, as proposed above, the conclusions do
not change since for T = 50 the critic level for 5% is -1.9475 and the asymptotic is
-1.9408.



FIGURE 1. Line 1 - Normal (0,1) and Line 2 - Gumbel (0,1)

TABLE 11. Number of times in
which H0 : φ = 1 was rejected for
the 1000 series generated by (1)
with Gumbel(0,1) error.

Parameters ADF Ev < 0.14

φ=1 0 50
φ=0.99 0 80
φ=0.975 0 176
φ=0.95 0 339

CONCLUDING REMARKS

As mentioned in the first section, Bayes Factor tests for unit roots have had many
difficulties to deal with time series presented in the field of econometrics. Several
alternative Bayes Factor tests have been proposed in order to overcome these difficulties.
However, their performance is still in question. For example, [1] concludes:

“In two Monte Carlo simulations, however, we find that the ‘objective’ Bayesian test
have relatively low power in distinguishing between plausible alternatives, making it
difficult to draw any conclusions concerning long-run [performance]. We conclude that,
at least for the ‘objective’ Bayesian test, the Bayesian approach is not necessary better
than the classical ADF approach.”

Based on simulation studies, [6] suggests that practitioners must assign a high proba-
bility to the value to be tested in order to get high power when using Bayes Factor tests,
although this means to increase the non-stationary weight when testing for unit root.



There have also been other tests based on or using specially designed priors, that
show a better performance. However, the use of such priors departs from some basic
paradigms of Bayesian statistics, like the Likelihood Principle. Moreover, these tech-
niques have to be fine tuned to each particular problem type or application. In contrast,
the FBST e-value derivation and implementation is straightforward from its general def-
inition, using absolutely no ad hoc artifice, like a special prior, or a measure on the hy-
pothesis set induced by some special parameterization, or an arbitrary initial likelihood
ratio. Hence, the FBST is in strict compliance with Likelihood Principle. Moreover, it
can be used when the normality assumption is not verified and for this the researcher
only has to choose another parametric or semi-parametric family in order to derive the
likelihood and the posterior.
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